This chapter presents a performance-prioritized computer aided control system design (CACSD) methodology using a multi-objective evolutionary algorithm. The evolutionary CACSD approach unifies different control laws in both the time and frequency domains based upon performance satisfactions, without the need of aggregating different design criteria into a compromise function. It is shown that control engineers' expertise as well as settings on goal or priority for different preference on each performance requirement can be easily included and modified on-line according to the evolving trade-offs, which makes the controller design interactive, transparent and simple for real-time implementation. Advantages of the evolutionary CACSD methodology are illustrated upon a non-minimal phase plant control system, which offer a set of low-order Pareto optimal controllers satisfying all the conflicting performance requirements in the face of system constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.