Abstract. Ecological models are effective tools to simulate the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a Dual Optimization Method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1° ×1° grid cells for the period from 2000 to 2007. Results show that land and ocean absorb −3.69 ± 0.49 Pg C year−1 and −1.91 ± 0.16 Pg C year−1, respectively. North America, Europe and China contribut −0.96 ± 0.15 Pg C year−1, −0.42 ± 0.08 Pg C year−1 and −0.21 ± 0.28 Pg C year−1, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60%. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (−0.97 ± 0.27 Pg C year−1) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by BEPS is reduced to −0.79 ± 0.22 Pg C year−1, being the third largest carbon sink.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.