Abstract14,000 data sets from an industrialized bainitization process, consisting of process gas furnace, salt bath and circulating air furnace, were used to predict the resulting Vickers hardness of cylinder heads made of 100Cr6 based on process data such as temperature and pressure. For prediction, machine learning methods such as ANNs, CNNs, ensemble methods and support vector regressors were compared. Meta features such as the furnace number as well as features extracted from the recorded time series were used. Data preparation and feature extraction were performed according to the machine learning methods used. The random forest achieved the best predictions with an R2 score of 0.406 and also allows the evaluation of the most important features.
To explain the variance in core hardness of 18CrNi8 nozzle bodies after industrial heat treatment, several data sources, including steel melt composition, sensor process data, and measurement errors, of five years are aggregated. In order to predict hardness variations caused by alloy composition, traditional physical models by Maynier are compared with data-driven machine learning models, which show no advantage due to low data variability. Neither method can fully explain the visible drifts, which are better tracked by an alternative (i. e., filter model) that uses past measurements. Machine learning on features from heat treatment is not successful in predicting hardness change, presumably because the process is too stable. Finally, a large part of the variance is caused by the HV 1 measurement error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.