The limited durability of resin-dentin bonds severely compromises the lifetime of tooth-colored restorations. Bond degradation occurs via hydrolysis of suboptimally polymerized hydrophilic resin components and degradation of water-rich, resin-sparse collagen matrices by matrix metalloproteinases (MMPs) and cysteine cathepsins. This review examined data generated over the past three years on five experimental strategies developed by different research groups for extending the longevity of resin-dentin bonds. They include: (1) increasing the degree of conversion and esterase resistance of hydrophilic adhesives; (2) the use of broad-spectrum inhibitors of collagenolytic enzymes, including novel inhibitor functional groups grafted to methacrylate resins monomers to produce anti-MMP adhesives; (3) the use of cross-linking agents for silencing the activities of MMP and cathepsins that irreversibly alter the 3-D structures of their catalytic/allosteric domains; (4) ethanol wet-bonding with hydrophobic resins to completely replace water from the extrafibrillar and intrafibrillar collagen compartments and immobilize the collagenolytic enzymes; and (5) biomimetic remineralization of the water-filled collagen matrix using analogs of matrix proteins to progressively replace water with intrafibrillar and extrafibrillar apatites to exclude exogenous collagenolytic enzymes and fossilize endogenous collagenolytic enzymes. A combination of several of these strategies should result in overcoming the critical barriers to progress currently encountered in dentin bonding.
The long-term effectiveness of chlorhexidine as a matrix metalloproteinase (MMP) inhibitor may be compromised when water is incompletely removed during dentin bonding. This study challenged this anti-bond degradation strategy by testing the null hypothesis that wet-bonding with water or ethanol has no effect on the effectiveness of chlorhexidine in preventing hybrid layer degradation over an 18-month period. Acid-etched dentin was bonded under pulpal pressure simulation with Scotchbond MP and Single Bond 2, with water wet-bonding or with a hydrophobic adhesive with ethanol wetbonding, with or without pre-treatment with chlorhexidine diacetate (CHD). Resin-dentin beams were prepared for bond strength and TEM evaluation after 24 hrs and after aging in artificial saliva for 9 and 18 mos. Bonds made to ethanol-saturated dentin did not change over time with preservation of hybrid layer integrity. Bonds made to CHD pretreated acid-etched dentin with commercial adhesives with water wet-bonding were preserved after 9 mos but not after 18 mos, with severe hybrid layer degradation. The results led to rejection of the null hypothesis and highlight the concept of biomimetic water replacement from the collagen intrafibrillar compartments as the ultimate goal in extending the longevity of resin-dentin bonds.
Aim-To compare canal and isthmus debris debridement efficacies of the manual dynamic irrigation (MDI) and apical negative pressure (ANP) techniques in the mesial root of mandibular first molars with narrow isthmi, using a closed canal design.Methodology-Micro-computed tomography was employed to select 20 teeth, each containing a narrow isthmus. Each root was sealed at the apex with hot glue and embedded in polyvinylsiloxane to simulate a closed canal system. The teeth were submitted to a standardised instrumentation protocol. Final irrigation was performed with either the MDI or the ANP technique using the EndoVac system (N=10). Masson trichrome-stained sections were prepared from completely demineralised roots at ten canal levels between 1-2.8 mm of the anatomical apices. Areas occupied by canals and isthmus of each root and debris in the corresponding regions were digitised by the NIH Image J software and statistically analysed using two-way repeated measures ANOVA.Results-For the instrumented canals, there were no differences between the two groups (p=0.131) in the area occupied by debris at all canal levels (p=0.343). Conversely, for the isthmus, less debris was found in the ANP group (p<0.001) but no differences were seen in each group with respect to the ten canal levels (p=0.352).Conclusion-Neither technique produce completely removed debris from the isthmus regions. However the EndoVac system, which encompasses the ANP concept, removed considerably more debris from narrow isthmi of the mandibular mesial roots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.