Synthetic networks aim at generating realistic projections of real-world networks while concealing the actual system information. This paper proposes a scalable and effective approach based on graph neural networks (GNN) to generate synthetic topologies of Cyber-Physical power Systems (CPS) with realistic network feature distribution. In order to comprehensively capture the characteristics of real CPS networks, we propose a generative model, namely Graph-CPS, based on graph variational autoencoder and graph recurrent neural networks. The method hides the sensitive topological information while maintaining the similar feature distribution of the real networks. We used multiple power and communication networks to prove and assess the effectiveness of the proposed method with experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.