Porcine and recombinant human atelocollagen I solutions were cross-linked with a water soluble carbodiimide at various stoichiometries and collagen concentrations (5-20 w/w %). The resulting hydrogels were clear and, when used as cell growth matrices, allowed cell and nerve visualization in vitro and in vivo. We have previously reported that, after six months of implantation in pigs' and rabbits' corneas, these robust hydrogels allowed regeneration of host cells and nerves to give optically clear corneas with no detected loss in thickness, indicating stable engraftment. Here, the biocompatible hydrogel formulations leading to this novel in vivo performance were characterized for amine consumption, gel hydration, thermal properties, optical clarity, refractive index, nutrient diffusion, biodegradation, tensile measurements, and average pore diameters. Gels with excellent in vitro (epithelial overgrowth, neurite penetration) and in vivo performance (clarity, touch sensitivity regeneration) had 4-11 nm pores, yet had glucose and albumin diffusive coefficients similar to mammalian corneas and allowed neurite extension through the gels.
The design of novel biomaterials is crucial for the advancement of tissue engineering in nerve regeneration. In this study we developed and evaluated novel biosynthetic scaffolds comprising collagen crosslinked with a terpolymer of poly(N-isopropylacrylamide) (PNiPAAm) as conduits for nerve growth. These collagen-terpolymer (collagen-TERP) scaffolds grafted with the laminin pentapeptide YIGSR were previously used as corneal substitutes in pigs and demonstrated enhanced nerve regeneration compared to allografts. The purpose of this project was to enhance neuronal growth on the collagen-TERP scaffolds through the incorporation of supporting fibers. Neuronal growth on these matrices was assessed in vitro using isolated dorsal root ganglia as a nerve source. Statistical significance was assessed using a one-way ANOVA. The incorporation of fibers into the collagen-TERP scaffolds produced a significant increase in neurite extension (p<0.05). The growth habit of the nerves varied with the type of fiber and included directional growth of the neurites along the surface of certain fiber types. Furthermore, the presence of fibers in the collagen-TERP scaffolds appeared to influence neurite morphology and function; neurites grown on fibers-incorporated collagen-TERP scaffolds expressed higher levels of Na channels compared to the scaffolds without fiber. Overall, our results suggest that incorporation of supporting fibers enhanced neurite outgrowth and that surface properties of the scaffold play an important role in promoting and guiding nerve regeneration. More importantly, this study demonstrates the potential value of tissue engineered collagen-TERP hybrid scaffolds as conduits in peripheral nerve repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.