Critical current performances of state-of-the-art Zr-added (Gd, Y)BaCuO tapes have been investigated over a temperature range of 20-77 K, in magnetic fields up to 9 T and over a wide angular range of magnetic field orientations. The peak in critical current that is commonly observed in the field orientation perpendicular to the tape in BaZrO 3 (BZO) containing superconducting tapes is found to vanish at 30 K in magnetic fields at 1-9 T. While the critical current of 15% Zr-added tapes was about 40% lower than that of 7.5% Zr-added tapes at 77 K, the pinning force values of the former were found to be 18-23% higher than those of the latter in the temperature range of 20-40 K and in magnetic fields of 3-5 T. The results from this study emphasize the importance of optimization of coated conductor fabrication processes for optimum performance not just in low magnetic fields at 77 K but also at the operating conditions of low temperatures and high magnetic fields that are of interest, especially for rotating superconducting machinery applications.
Critical current (I c ) values of 1384 A/12 mm, corresponding to a critical current density of 12.47 MA cm −2 and a pinning force of 374 GN m −3 , have been achieved at 30 K, 3 T in the orientation of field parallel to the c axis (B c) in (Gd, Y)BaCuO tapes with 15 mol% Zr addition made by metal organic chemical vapor deposition (MOCVD). These tapes show pinning force levels as high as 453 GN m −3 at 30 K. An analysis of the properties of 24-28 (Gd, Y)BaCuO tapes with 15 mol% Zr addition showed a lack of correlation between their critical currents at 30 K, 3 T (B c) and I c values both at 77 K, zero field and at 77 K, 1 T (B c). However, a strong correlation was found between the critical currents at 30 K, 3 T and at 77 K, 3 T (B c). It has also been discovered that the minimum critical current (I c,min ) value at 77 K, 3 T has no influence on the I c,min value at 30 K, 3 T, and it in turn depends on the ratio of the I c values in the orientations of field parallel and perpendicular to the c axis at 77 K, 3 T.
The cancer stem cell (CSC) theory depicts a special population within the cancer mass that self-renew and sustain the cancer, even if the other cells were eliminated by therapies. How CSCs acquire these unique traits is still unclear. Crumbs homolog 3 (CRB3), a member of the CRB polarity complex, has been reported to act as a tumor suppressor. Here, we detected significantly lower or negative CRB3 expression in human breast cancer tissues. Knockdown of CRB3 generated non-tumorigenic, immortalized breast epithelial cell line MCF 10A with CSC properties. Simultaneously, we found that CRB3 downregulation induced the epithelial–mesenchymal transition and activated TAZ (transcriptional co-activator with PDZ-binding motif) and β-catenin. Significantly, the activation of TAZ and β-catenin sufficed in conferring MCF 10A cells with CSC properties. This study demonstrates that cell polarity proteins may serve as a switch of the differentiated vs multipotent states in breast cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.