We investigated whether preconditioning could protect several cultured cell lines, to determine whether the protection is specific for cells derived from different myogenic and non-myogenic sources. Ischemia was simulated by centrifugation of cells into a pellet, and cell viability was determined by hypotonic trypan blue solution. Preconditioning was produced by brief exposures to either glucose-free solution or metabolic inhibition. Freshly isolated rabbit ventricular myocytes were studied to confirm that preconditioning occurs in this model. We then compared these results to those in several cultured cell lines, including HEK 293 cells derived from human embryonic kidney, HIT-T15 cells from Syrian hamster pancreatic islets, and C2C12 cells from mouse skeletal muscle. In the latter cell line, we also determined whether differentiation alters preconditioning. Preconditioning protected rabbit ventricular myocytes: the percentage of dead cells was decreased from 36.8 +/- 4.7% in the control group to 23.0 +/- 5.2% in the preconditioned group after 60 min and from 50.7 +/- 2.1% in the control group to 25.5 +/- 4.5% in the preconditioned group after 120 min ischemia (p < 0.02). In contrast, there was no protection from preconditioning in HEK 293 cells or HIT-T15 cells. Preconditioning did not protect C2C12 myoblasts either. Interestingly, after C2C12 myoblasts had differentiated into myotubes (induced by exposing the cells to low-serum medium), they could then be protected by preconditioning (46.3 +/- 3.6% in the control group vs 26.0 +/- 2.7% in the preconditioned group after 60 min and 67.4 +/- 3.6% in the control group vs 46.0 +/- 4.6% in the preconditioned group after 120 min ischemia; p < 0.05). In conclusion, protection from preconditioning is cell-type specific. The presence of endogenous KATP channels (which are plentiful in HIT-T15 cells) is insufficient to enable preconditioning of the cell. Among the various cell types studied, only differentiated muscle cells (rabbit ventricular myocytes and C2C12 myotubes) exhibited preconditioning.
These data, for the first time, demonstrated a selective activation effect of S1P on vagal afferent nerve subtype in the gastrointestinal tract. This may help to better understand its role in visceral inflammatory nociception.
Epithelial to mesenchymal transitions and cell migration are important features of embryonic development and tumor metastasis. We are employing a systematic genetic approach to study the border cells in the Drosophila ovary, as a simple model for these cellular behaviors. Previously we found that expression of the basic-region/leucine zipper transcription factor, C/EBP, is required for the border cells to initiate their migration. Here we report the identification of a second nuclear factor, named JING (which means ‘still’), that is required for initiation of border cell migration. The jing locus was identified in a screen for mutations that cause border cell migration defects in mosaic clones. The jing mutant phenotype resembles that of slbo mutations, which disrupt the Drosophila C/EBP gene, but is distinct from other classes of border cell migration mutants. Expression of a jing-lacZ reporter in border cells requires C/EBP. Moreover, expression of jing from a heat-inducible promoter rescues the border cell migration defects of hypomorphic slbo mutants. The JING protein is most closely related to a mouse protein, AEBP2, which was identified on the basis of its ability to bind a small regulatory sequence within the adipocyte AP2 gene to which mammalian C/EBP also binds. We propose that the need to coordinate cell differentiation with nutritional status may be the link between mammalian adipocytes and Drosophila border cells that led to the conservation of C/EBP and AEBP2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.