The nanostructure and magnetic properties of composite CoPt:C films at room temperature were investigated as a function of annealing temperature, carbon concentration, and film thickness. CoPt:C films with a variety of carbon concentrations were fabricated by cosputtering Co, Pt, and C onto water-cooled Si(100) substrates followed by annealing. X-ray diffraction and transmission electron microscopy analyses indicate that nanocrystallites of face-centered-tetragonal (fct) CoPt phase, which has a uniaxial magnetocrystalline anisotropy constant of about 5×107 erg/cm3, can be formed in carbon matrix when the annealing temperature is higher than 600 °C. The grain sizes of the fct CoPt crystallites are about 10 nm and the coercivities can be as high as 12 kOe. Higher annealing temperature and lower carbon concentration generally lead to larger grain sizes and perhaps more complete formation of the fct CoPt phase, and therefore higher coercivities. The coercivity is insensitive to the film thickness until the thickness is smaller than the CoPt grain size, when the coercivity starts to decrease with film thickness. The magnetic activation volumes are typically around 1×10−18 cm3. The nanostructure and the associated magnetic properties of these composite CoPt:C films are promising as potential media for extremely high-density recording.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.