Target of rapamycin (TOR), a member of the phosphatidylinositol kinase-related kinase family, plays a critical role in the regulation of growth, metabolism, development and survival, at both the cellular and the organismal levels. Two paralogous Tor genes, BmTor1 and BmTor2, were identified as a pair of inverted repeats in the genome of the silkworm Bombyx mori. The synteny of BmTor1 and CG8360 indicates that BmTor1 is the orthologue while BmTor2 is a duplicate. Analyses of the two BmTor genes at both the nucleotide and amino acid levels reveal that they are evolutionally and structurally conserved. The two BmTor genes had similar expression patterns of tissue distribution with highest levels in the nervous system, and nearly identical developmental change profiles with maximal levels during the 4(th) -larval-moulting and the larval-pupal transition stages. Furthermore, both BmTor genes were up-regulated by either starvation or the moulting hormone 20-hydroxyecdysone (20E), while BmTor2 was more sensitive to both treatments than BmTor1. For the first time, we have identified two copies of the Tor gene in a higher eukaryote, which are induced by starvation and 20E during the larval moulting and the larval-pupal transition stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.