HYPOSENSITIVE TO LIGHT (HTL) and DWARF14 (D14) mediate the perception of karrikin and strigolactone, which stimulates germination of the parasitic weed Striga. However, their role in parasitic seeds is poorly understood, and the basis for their differing responsiveness remains unclear. Here, we show that Striga hermonthica HTL proteins (ShHTLs) in ‘conserved’ and ‘intermediate’ clades are able to bind karrikin. The ‘divergent’ clade is able to hydrolyze strigolactone. Unexpectedly, we find that ShD14 is also capable of hydrolyzing strigolactone. Through comparative analysis of ShHTLs and ShD14 crystal structures, we provide insights into the basis for their selectivity. Moreover, we show that both ShD14 and divergent clade ShHTLs, but not conserved and intermediate clade ShHTLs, can interact with the putative downstream signaling component ShMAX2 in the presence of the synthetic strigolactone, rac-GR24. These findings provide insight into how strigolactone is perceived and how ligand specificity is determined.
We developed easy to synthesize and efficient strigolactone analogs with great application potential. Biological activities and receptor binding assays demonstrate the effect of structural modification on the efficacy and specificity of strigolactones.
Apical sodium-dependent bile acid transporter (ASBT) retrieves bile acids from the small intestine and plays a pivotal role in enterohepatic circulation. Currently, high-resolution structures are available for two bacterial ASBT homologs (ASBTNM from Neisseria meningitides and ASBTYf from Yersinia frederiksenii), from which an elevator-style alternating-access mechanism has been proposed for substrate transport. A key concept in this model is that the substrate binds to the central cavity of the transporter so that the elevator-like motion can expose the bound substrate alternatingly to either side of the membrane during a transport cycle. However, no structure of an ASBT has been solved with a substrate bound in its central cavity, so how a substrate binds to ASBT remains to be defined. In this study, molecular docking, structure determination and functional analysis were combined to define and validate the details of substrate binding in ASBTYf. The findings provide coherent evidence to provide a clearer picture of how the substrate binds in the central cavity of ASBTYf that fits the alternating-access model.
Apical sodium-dependent bile acid transporter (ASBT) mediates the uptake of bile acids from the ileum lumen into enterocytes and presents a potential target for the treatment of several metabolic diseases, including type 2 diabetes. It has been proposed that the underlying mechanism for transport by ASBT is an elevator-style alternating-access model, which was deduced mainly by comparing high-resolution structures of two bacterial ASBT homologs (ASBTNM from Neisseria meningitides and ASBTYf from Yersinia frederiksenii) in different conformations. However, one important issue is that the only outward-facing structure (PDB entry 4n7x) was obtained with an Na+-binding site mutant of ASBTYf, which severely cripples its transport function, and therefore the physiological relevance of the conformation in PDB entry 4n7x requires further careful evaluation. Here, another crystal structure is reported of ASBTYf that was captured in a state closely resembling the conformation in PDB entry 4n7x using an engineered disulfide bridge. The introduced cysteine mutations avoided any proposed Na+- or substrate-binding residues, and the resulting mutant retained both structural and functional integrity and behaved similarly to wild-type ASBTYf. These data support the hypothesis that the PDB entry 4n7x-like structure represents a functional outward-facing conformation of ASBTYf in its transport cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.