Few-layer graphene was fabricated on nickel substrates using pulsed laser deposition at a relatively low temperature of 750 °C. The effects of cooling rate and laser energy on the ability to produce crystalline graphene layers were studied. It was observed that using a cooling rate of 1 and 50 °C/min produced few-layer graphene while the latter gave less defects. Laser energy was a less critical factor as long as the laser energy was below 100 mJ, however a higher laser energy was detrimental to the precipitation process. The mechanisms behind the observation of such phenomena are explained.
Large area graphene field emitters were fabricated using electrophoretic deposition. By varying the deposition time, we were able to fabricate emitters with varied field enhancement factors. The turn-on field increased when the deposition time increased, and it was observed that a monolayer of graphene flakes covered on the substrate gave the best results. The low emission turn-on field obtained from the graphene field emitters was attributed to the random orientation of graphene flakes which give protruded edges that acted as field enhancing spots. Graphene emitters produced by this method present a low cost cold cathode that can be mass produced.
Many studies have shown that amorphous carbon films with reduced internal stress, improved adhesion strength, and diversified material properties are obtainable through doping process, but the presence of dopants was reported to promote surface evolution and alter the microstructures of carbon matrix. By combining analyses from experimental results and theoretical estimations, this work examines the mechanism behind the surface evolution and microstructural changes in laser fabricated nanostructured copper-carbon composite. We showed that the presence of metal ions during laser deposition increased the heat dissipation on carbon matrix, which enhanced the formation of nanoislands but graphitized the carbon matrix. In addition, theoretical estimations and XPS hinted that the presence of energetic species may force the carbon ions to react with the substrate interface and form silicon carbide bonds, which contributed to the improved adhesion strength observed in copper doped carbon films, along with a reduction in internal stress owing to the presence of nanoclusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.