This study compared the blood concentrations of remifentanil obtained in a previous clinical investigation with the predicted remifentanil concentrations produced by different pharmacokinetic models: a non-linear mixed effects model created by the software NONMEM; an artificial neural network (ANN) model; a support vector machine (SVM) model; and multi-method ensembles. The ensemble created from the mean of the ANN and the non-linear mixed effects model predictions achieved the smallest error and the highest correlation coefficient. The SVM model produced the highest error and the lowest correlation coefficient. Paired t-tests indicated that there was insufficient evidence that the predicted values of the ANN, SVM and two multi-method ensembles differed from the actual measured values at alpha = 0.05. The ensemble method combining the ANN and non-linear mixed effects model predictions outperformed either method alone. These results indicated a potential advantage of ensembles in improving the accuracy and reducing the variance of pharmacokinetic models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.