ABSTRACT. Here, we studied hair follicle development of Liaoning Cashmere goats. Every month for 1 year, skin samples were collected from five 1.5-year-old female goats, and made into paraffin sections. A number of parameters were measured of primary and secondary hair follicles via microscopic observation including follicle depth, hair bulb width, dermis and epidermis thickness, changes in follicle activity, and histology. The results showed the presence of three phases in the annual hair cycle: anagen, catagen, and telogen. Primary and secondary hair follicle depth varied across the months; however, no significant difference was obtained between adjacent months (P > 0.05). Primary hair follicles had a bigger hair bulb width compared to secondary hair follicles; however, this difference declined during hair follicle developed in anagen. As hair follicle growth slowed, the hair bulb broadened, and hair root depth became shallower. During the entire hair cycle, hair follicle depth and dermis thickness were positively correlated; however, this relationship was not significant (P > 0.05) for primary and secondary hair follicle density and the ratio of secondary hair follicle density and primary hair follicle density (S/P ratio). In addition, new and old primary hair follicles coexisted with secondary hair follicles. Finally, secondary hair follicles had a higher activity rate compared to primary hair follicle in adult Liaoning Cashmere goats in certain months.
ABSTRACT. The silver fox (Vulpes vulpes), a coat color variant of the red fox, is one of the most important fur-bearing animals. To date, development of microsatellite loci for the silver fox has been limited and mainly based on cross-amplification by using canine SSR primers. In this study, 28 polymorphic microsatellite markers were isolated and identified for silver fox through the construction and screening of an (AC) n -enriched library. The number of alleles per locus ranged from 2 to 8 based on 48 individuals tested. The expected and observed hetero- The polymorphic markers presented in this study may be useful for future analysis of the genetic diversity and population structure of farmed silver fox and wild red fox.
ABSTRACT. B chromosomes are dispensable and co-exist with autosomal and sex chromosomes. The karyotype of the Chinese raccoon dog (Nyctereutes procyonoides procyonoides) comprises 0-4 B chromosomes. The proto-oncogene KIT is found on all B chromosomes of the Chinese raccoon dog. In the present study, partial DNA and mRNA sequences of KIT were amplified and sequenced from four individuals containing B chromosomes. Sequence analyses revealed that polymorphisms including single nucleotide polymorphisms (SNPs) and inserts/deletions were rich in the KIT gene of Chinese raccoon dog at the genomic level. However, no polymorphism was detected at the mRNA level. A comparison of mRNA sequences from Chinese raccoon dogs with the corresponding sequences derived from arctic fox and dog, which do not contain B chromosomes, revealed the mRNA sequences of the 10 SNPs to be identical between these three species. Therefore, these findings suggest that KIT located on the B chromosomes in Chinese raccoon dog lacks transcriptional activity.
ABSTRACT.The quantity, quality, and distribution of eumelanin and pheomelanin determine a wide variety of coat colors in animals. Three coat color variants exist in farmed wild-type Chinese raccoon dog (Nyctereutes procyonoides procyonoides), which is an important fur-bearing animal species. The ASIP gene is an important candidate gene for coat color variation in some species. In this study, the complete cDNA sequences of ASIP were amplified from a wild-type Chinese raccoon dog. Sequence analysis revealed the coding region of ASIP in Chinese raccoon dog to be 396-bp in length and two transcripts (accession Nos. KT224450 and KT224451) were identified due to the alternative use of exon 1 (1A and 1C). However, the alternative splicing pattern and the coding sequence of ASIP in three types of coat color variants were the same as those identified in the wild-type individual. Based on the results obtained in this study, we can exclude a role for alternative splicing of exon 1 and the coding sequence of ASIP in coat color variation in Chinese raccoon dog.
ABSTRACT. Amelogenin is a major protein of the developing enamel matrix. There are two amelogenin genes (AMELX and AMELY) located on the X and Y chromosomes, respectively, in dogs. In the present study, we characterized full-length cDNAs and alternative splicing patterns of the AMEL genes in the tooth tissue of a dog by 5'-and 3'-rapid amplification of cDNA ends and AMEL-specific RT-PCR. Sequence analysis revealed that the coding regions of AMELX and AMELY were 579 and 576 bp (accession Nos. KP244310 and KP244311), respectively. The coding sequence of AMELX had 95.1% identity to that of AMELY. The AMEL genes on X and Y chromosomes were both expressed in developing tooth tissue. Eight different alternatively spliced transcripts were identified, five from AMELX and three from AMELY.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.