The results from this study suggest that there are several key factors involved in the initiation and propagation of anulus failure: axial compressive load, bending and twisting, and disc saturation. If one of these is lacking, anulus failure is harder to achieve.
Variations in disc height may compromise the general conclusions reached from experimental work and analytic studies in which geometric parameters (especially disc height and disc cross-sectional area) are not taken into consideration.
A viscoelastic finite element model of a L2-L3 motion segment was constructed and used to study: (1) the behavior of the intervertebral disc with different amounts of nucleus fluid loss; and (2) the effect of different rates of fluid loss on the viscoelastic behavior of the disc. The results indicate that: (1) The viscoelastic behavior of the intervertebral disc depends to a large extent on the rate of fluid loss from the disc; the intrinsic properties of disc tissue play a role only at the early stage of compressive loading; (2) the axial strain increases, whereas the intradiscal pressure and the posterior radial disc bulge decrease with increasing fluid loss; (3) a decreasing fluid loss rate with a total fluid loss of 10 to 20 percent (from the nucleus) during the first hour of compressive loading best predicts the overall viscoelastic behavior of a disc.
Aging and degeneration of the intervertebral disk are noted by changes in tissue composition and geometry, including a decrease in nucleus pulposus (NP) area. The NP centroid is positioned slightly posterior of the disk's centroid, but the effect of NP size and location on disk joint mechanics is not well understood. We evaluated the effect of NP size and centroid location on disk joint mechanics under dual-loading modalities (i.e., compression in combination with axial rotation or bending). A finite element model (FEM) was developed to vary the relative NP area (NP:Disk area ratio range = 0.21–0.60). We also evaluated the effect of NP position by shifting the NP centroid anteriorly and posteriorly. Our results showed that compressive stiffness and average first principal strains increased with NP size. Under axial compression, stresses are distributed from the NP to the annulus, and stresses were redistributed toward the NP with axial rotation. Moreover, peak stresses were greater for disks with a smaller NP area. NP centroid location had a greater impact on intradiscal pressure during flexion and extension, where peak pressures in the posterior annulus under extension was greater for disks with a more posteriorly situated NP. In conclusion, the findings from this study highlight the importance of closely mimicking NP size and location in computational models that aim to understand stress/strain distribution during complex loading and for developing repair strategies that aim to recapitulate the mechanical behavior of healthy disks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.