The phenomenological theory for describing high-temperature interaction between metal and diluted gaseous medium has been developed. The theory is based on the assumption of duplex contact layer existence in the vicinity of interface (with relative thickness 2 d), where chemical reactions and processes of gas component migration occur. The non-stationary conditions of mass transfer at the interface are described involving effective average parameters. These conditions allow considering a wide spectrum of boundary diffusion phenomena (in a short and prolonged time ranges), in order to describe the kinetics of accumulation of diffusing component close to the interface. The description of the kinetic of gaseous saturation of metal (nitriding and borating) in the diluted medium becomes a partial proof of the suggested models. In order to approach the diffusion phenomena, boundary conditions, which contain, besides the coordinate derivative of concentration function, also the time derivative, were suggested. The derived equations describe the time dependence of change of surface concentration of gaseous component, the kinetics of its accumulation owing to chemical reaction, the specimen mass change owing to both, the diffusive addition dissolution in metal and its chemical interaction. The role of temperature is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.