The effect of the content of lysine and methionine in metabolizable protein (MP) on lactation performance and N utilization in Chinese Holstein cows was determined. A control diet (C) was formulated to be adequate in energy but slightly limiting in MP. The concentration of Met and Lys in MP was 1.87 and 5.93%, respectively. The treatments were as follows (% of Met or Lys in MP): L=diet C supplemented with L-lysine-HCl at 0.49% on a dry matter (DM) basis (Met, 1.87; Lys, 7.00); M=diet C supplemented with 2-hydroxy-4-(methylthio)-butanoic acid (HMB) at 0.15% (Met, 2.35; Lys, 5.93); ML=diet C supplemented with 0.49% L-lysine HCl and 0.15% HMB (Met, 2.39; Lys, 7.10). The diets were fed to 60 Chinese Holsteins in mid-lactation (average days in milk=120, and milk yield=32.0 kg/d) for 8 wk. Milk yield was increased by supplementation of either Lys (1.5 kg/d) or Met (2.0 kg/d), and supplementation of both Lys and Met further increased milk yield (3.8 kg/d). There was no significant difference in dry matter intake across treatment groups. Cows on treatments M (3.95%) and ML (3.90%) had higher milk fat content than those on C (3.60%) and L (3.67%), but there were no significant differences in milk protein and lactose contents or somatic cell count among treatments. Supplementation of Met or Lys significantly increased Met or Lys concentration in arterial plasma. Treatment ML had a higher conversion of intake N to milk N and lower urea N concentrations in serum, urine, and milk than did treatment C. Supplementing HMB and L-lysine-HCl to provide approximately 2.3% Met and 7.0% Lys of the MP in diets slightly limiting in MP increased milk production, milk protein yield, and N utilization efficiency.
The study was conducted to investigate the effects of tea saponin (TS 5 g/kg DM), TS plus disodium fumarate (DF 20 g/kg DM) and coconut oil (7% DM) on methane emissions in sheep using simple box chamber. Eight Huzhou sheep were assigned to four treatments in a 4 × 4 Latin square arrangement. Addition of TS and TSDF decreased (P<0.0001) methane emissions by 8.5 and 9.6%, respectively. Addition of TSDF signifi cantly increased (P<0.01) propionate and decreased (P<0.01) acetate proportion. Addition of TS and TSDF, though not as effectively as coconut oil, can inhibit methane emissions, which is benefi cial for economy and environment.
Mitigation of the methane (CH) emission from ruminants is needed to decrease the environmental impact of ruminant animal production. Different plant materials and chemicals have been tested, but few are both effective and practical. Medicinal herbs contain biological compounds and antimicrobials that may be effective in lowering the CH production. However, few studies have systematically evaluated medicinal herbs for their effect on CH production or on the rumen microbiota. In this study, extracts from 100 medicinal herbs were assessed for their ability to decrease CH production by rumen microbiota in vitro. The extracts of 12 herbs effectively lowered the CH production, with the extract of Perilla frutescens seeds being the most effective. The major components of P. frutescens seed extract were identified, and the effects of the extract on the fermentation characteristics and populations of rumen methanogens, fungi, protozoa, and select bacteria were also assessed. The decreased CH production induced by the P. frutescens seed extract was accompanied by an increased abundance of Ruminobacter, Selenomonas, Succinivibrio, Shuttleworthis, Pseudobutyrivbrio, Anaerovibrio, and Roseomonas and a decreased abundance of Methanobrevibacter millerae. The abundance of Pedobacter, Anaeroplasma, Paludibacter, Ruminococcus, and unclassified Lachnospiraceae was positively correlated with the CH production, with no effects on volatile fatty acids. This study suggests that medicinal herbs may be used to mitigate the CH emission from ruminants.
ObjectiveThe experiment was conducted to evaluate the effects of four fungal pretreatments on the nutritional value of Camellia seed residues, and to evaluate the feeding value of pre-treated Camellia seed residues for ruminants.MethodsCamellia seed residues were firstly fermented by four lignin degrading fungi, namely, Phanerochaete chrysosporium (P. chrysosporium)-30942, Trichoderma koningiopsis (T. koningiopsis)-2660, Trichoderma aspellum (T. aspellum)-2527, or T. aspellum-2627, under solid-state fermentation (SSF) conditions at six different incubation times. The nutritional value of each fermented Camellia seed residues was then analyzed. The fermentation profiles, organic matter degradability and metabolizable energy of each pre-treated Camellia seed residue were further evaluated using an in vitro rumen fermentation system.ResultsAfter 5 days of fermentation, P. chrysosporium-30942 had higher degradation of lignin (20.51%), consumed less hemicellulose (4.02%), and the SSF efficiency reached 83.43%. T. koningiopsis-2660 degraded more lignin (21.54%) and consumed less cellulose (20.94%) and hemicellulose (2.51%), the SSF efficiency reached 127.93%. The maximum SSF efficiency was 58.18% for T. aspellum-2527 and 47.61% for T. aspellum-2627, appeared at 30 and 15 days respectively. All the fungal pretreatments significantly improved the crude protein content (p<0.05). The Camellia seed residues pretreated for 5 days were found to possess significantly increased organic matter degradability, volatile fatty acid production and metabolizable energy (p<0.05) after the treatment of either P. chrysosporium-30942, T. koningiopsis-2660 or T. aspellum-2527. The fungal pretreatments did not significantly change the rumen fermentation pattern of Camellia seed residues, with an unchanged ratio of acetate to propionate.ConclusionThe fungi showed excellent potential for the solid-state bioconversion of Camellia seed residues into digestible ruminant energy feed, and their shorter lignin degradation characteristics could reduce loss of the other available carbohydrates during SSF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.