A stability theory of nonlinear impulsive delay differential equations (IDDEs) is established. Existing algorithm may not converge when the impulses are variable. A convergent numerical scheme is established for nonlinear delay differential equations with variable impulses. Some stability conditions of analytical and numerical solutions to IDDEs are given by the properties of delay differential equations without impulsive perturbations.
We apply the Krasnoselskii’s fixed point theorem to study the existence of multiple positive periodic solutions for a class of impulsive functional differential equations with infinite delay and two parameters. In particular, the presented criteria improve and generalize some related results in the literature. As an application, we study some special cases of systems, which have been studied extensively in the literature.
In this paper, we study the oscillatory behavior of solutions of a class of damped fractional partial differential equations subject to Robin and Dirichlet boundary value conditions. By using integral averaging technique and Riccati type transformations, we obtain some new sufficient conditions for oscillation of all solutions of this kind of fractional differential equations with damping term. Our results essentially enrich the ones in the existing literature. Finally, we also give two specific examples to illustrate our main results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.