Human volitional actions are preceded by preparatory processes, a critical mental process of cognitive control for future behavior. Volitional action preparation is regulated by large-scale neural circuits including the cerebral cortex and the basal ganglia. Because volitional action preparation is a covert process, the network dynamics of such neural circuits have been examined by neuroimaging and recording event-related potentials. Here, we examined whether such covert processes can be measured by the overt responses of fixational saccades (including microsaccades), the largest miniature eye movements that occur during eye fixation. We analyzed fixational saccades while adult humans maintained fixation on a central visual stimulus as they prepared to generate a volitional saccade in response to peripheral stimulus appearance. We used the antisaccade paradigm, in which subjects generate a saccade toward the opposite direction of a peripheral stimulus. Appropriate antisaccade performance requires the following two aspects of volitional control: 1) facilitation of saccades away from the stimulus and 2) suppression of inappropriate saccades toward the stimulus. We found that fixational saccades that occurred before stimulus appearance reflected the dual preparatory states of saccade facilitation and suppression and correlated with behavioral outcome (i.e., whether subjects succeeded or failed to cancel inappropriate saccades toward the stimulus). Moreover, fixational saccades explained a large proportion of individual differences in behavioral performance (poor/excellent) across subjects. These results suggest that fixational saccades predict the outcome of future volitional actions and may be used as a potential biomarker to detect people with difficulties in volitional action preparation.
A high-repetition-rate optical pulse generator which employs a Fabry-Perot electro-optic modulator as the output coupler of a laser resonator was constructed. Using this generator with a He–Ne 6328-Å laser tube, 21-psec optical pulses at a repetition rate of 2.7 × 109 pps were experimentally obtained with an average power level of 0.5 mW. In addition, it is demonstrated that the width of the pulses obtained from this generator can be narrowed without regard to the gain-linewidth limitation. This kind of pulse generator may be particularly useful for obtaining short optical pulses from low-gain gas lasers, and it is possible to obtain 1010-pps picosecond pulses from a He–Ne 6328-Å laser.
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that starts in early childhood and has a comprehensive impact on psychosocial activity and education as well as general health across the lifespan. Despite its prevalence, the current diagnostic criteria for ADHD are debated. Saccadic eye movements are easy to quantify and may be a quantitative biomarker for a wide variety of neurological and psychiatric disorders, including ADHD. The goal of this study was to examine whether children with ADHD exhibit abnormalities during a visually guided pro-saccadic eye-movement and to clarify the neurophysiological mechanisms associated with their behavioral impairments. Thirty-seven children with ADHD (aged 5–11 years) and 88 typically developing (TD) children (aged 5–11 years) were asked to perform a simple saccadic eye-movement task in which step and gap conditions were randomly interleaved. We evaluated the gap effect, which is the difference in the reaction time between the two conditions. Children with ADHD had a significantly longer reaction time than TD children (p < 0.01) and the gap effect was markedly attenuated (p < 0.01). These results suggest that the measurement of saccadic eye movements may provide a novel method for evaluating the behavioral symptoms and clinical features of ADHD, and that the gap effect is a potential biomarker for the diagnosis of ADHD in early childhood.
The reaction times of saccadic eye movements have been studied extensively as a probe for cognitive behavior controlled by large-scale cortical and subcortical neural networks. Recent studies have shown that the reaction times of targeting saccades toward peripheral visual stimuli are prolonged by fixational saccades, the largest miniature eye movements including microsaccades. We have shown previously that the frequency of fixational saccades is decreased by volitional action preparation controlled internally during the antisaccade paradigm (look away from a stimulus). Instead, here we examined whether fixational saccade modulation induced externally by sensory events could also account for targeting saccade facilitation by the same sensory events. When targeting saccades were facilitated by prior fixation stimulus disappearance (gap effect), fixational saccade occurrence was reduced, which could theoretically facilitate targeting saccades. However, such reduction was followed immediately by the rebound of fixational saccade occurrence in some subjects, which could eliminate potential benefits from the previous fixational saccade reduction. These results do not mean that fixational saccades were unrelated to the gap effect because they indeed altered that effect by delaying targeting saccade initiation on trials without the fixation gap more strongly than trials with it. Such changes might be attributed to the disruption of volitional saccade preparation because the frequency of fixational saccades observed in this study was associated with the ability of volitional control over antisaccade behavior. These results suggest that fixational saccades alter the gap effect on targeting saccade reaction times, presumably by disrupting volitional saccade commands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.