Using the convex optimization method and Helstrom family of ensembles introduced in Ref.[1], we have discussed optimal ambiguous discrimination in qubit systems. We have analyzed the problem of the optimal discrimination of N known quantum states and have obtained maximum success probability and optimal measurement for N known quantum states with equiprobable prior probabilities and equidistant from center of the Bloch ball, not all of which are on the one half of the Bloch ball and all of the conjugate states are pure. An exact solution has also been given for arbitrary three known quantum states. The given examples which use our method include: 1. Diagonal N mixed states; 2. N equiprobable states and equidistant from center of the Bloch ball which their corresponding Bloch vectors are inclined at the equal angle from z axis; 3. Three mirror-symmetric states; 4. States that have been prepared with equal prior probabilities on vertices of a Platonic solid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.