The high-affinity interleukin 2 receptor (IL-2R) consists of at least three distinct subunits: the IL-2R a chain (IL-2Rca), , chain (IL-2RO), and -y chain (IL-2Ry). It has been shown that the cytoplasmic region of IL-2RP, but not of IL-2Ra, is essential for IL-2 signalling to the cell interior. In the present study, we examined the functional role of the IL-2R-y cytoplasmic region in the IL-3-dependent mouse hematopoietic cell line BAF-B03, which expresses the endogenous IL-2Ra and IL-2R-y, or its subline F7, which additionally expresses human IL-2RP cDNA. We show that overexpression of a mutant IL-2R-y, lacking all but 7 amino acids of its cytoplasmic region, results in the selective inhibition of IL-2-induced c-fos gene activation and cellular proliferation in F7 cells. When two chimeric receptor molecules in which the cytoplasmic regions of IL-2RP and IL2R,y had been swapped with each other (IL-2RI/y and IL-2Ry/0) were coexpressed in BAF-B03, the cells responded to IL-2. These results indicate the critical importance of the IL-2-induced functional cooperation of the two cytoplasmic regions. Finally, we provide evidence that the IL-2R-y cytoplasmic region is also critical for the IL-4-and IL-7-induced growth signal transduction in BAF-B03.
BAG-1 is a Bci-2-binding protein which functions in protection from apoptotic cell death. Here we provide evidence for interleukin-2 (IL-2)-mediated upregulation of BAG-1 expression. In hematopoietic cell line BAF-B03 F7 cells, gene transfer mediated expression of the IL-2R beta c chain is sufficient to confer proliferation and cell survival responses to IL-2. In these IL-2R beta c-expressing cells, BAG-1 mRNA was dramatically induced by IL-2. The IL-2-mediated induction of BAG-1 expression required the activation of tyrosine kinase(s) and was sensitive to rapamycin as the induction of bcl-2 expression was. Analysis of the transfectants which express mutant IL-2R beta c chains or mutant Janus family protein tyrosine kinase Jak3 lacking the kinase domain showed that the IL-2-mediated BAG-1 gene expression required the serinerich region within the IL-2R beta c chain, but Jak3 activation was dispensable. The signaling pathway for BAG-1 gene expression thus highly resembles that for bcl-2 gene expression, strongly suggesting that their induction shares the same signaling pathway. In addition, deletion of the serine-rich region led to loss of IL-2-mediated protection from apoptotic cell death. Taken together, these studies demonstrate that the serine-rich region of the IL-2R beta c chain mediates the coordinated expression of bcl-2 and BAG-1 genes, thereby contributing to suppression of apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.