The BigRIPS in-flight separator, which became operational in March 2007 at the RI Beam Factory (RIBF) at RIKEN Nishina Center, has been used to produce a variety of rare-isotope (RI) beams by using in-flight fission as well as projectile fragmentation. Its major features are large ion-optical acceptances and two-stage structure. Excellent performance in particle identification is also an important feature. Efficient RI-beam production based on the in-flight scheme has been made possible by these features of the BigRIPS separator, allowing us to greatly expand the accessible region of exotic nuclei. An RI-beam delivery line following the BigRIPS separator is designed to work as a forward spectrometer, called ZeroDegree. As a major experimental device at RIBF, the ZeroDegree spectrometer has been used for a variety of reaction studies with RI beams. In this paper, we present an overview of the BigRIPS separator and the ZeroDegree spectrometer, emphasizing the capability and potential of the new-generation RI beam facility, RIBF.
A search for isomeric γ-decays among fission fragments from 345 MeV/nucleon 238 U has been performed at the RIKEN Nishina Center RI Beam Factory. Fission fragments were selected and identified using the superconducting in-flight separator BigRIPS and were implanted in an aluminum stopper. Delayed γ-rays were detected using three clover-type high-purity germanium detectors located at the focal plane within a time window of 20 μs following the implantation. We identified a total of 54 microsecond isomers with half-lives of ~ 0. on the obtained spectroscopic information and the systematics in neighboring nuclei. Nature of the nuclear isomerism is discussed in relation to evolution of nuclear structure.KEYWORDS: Nuclear reactions Be( 238 U, x) and Pb( 238 U, x) E = 345 MeV/nucleon, in-flight fission, fission fragments, in-flight RI beam separator, short-lived isomers, new isomers, half-life, γ-ray relative intensity, γγ coincidence, proposed level schemes DOI: PACS number(s): 23.35.+g, 23.20.Lv, 29.38.Db _____________________ *
The experimental data obtained from the reaction of 6 Li projectiles at 2A GeV on a fixed graphite target were analyzed to study the invariant mass distributions of d + π − and t + π − . Indications of a signal in the d + π − and t + π − invariant mass distributions were observed with significances of 5.3 σ and 5.0 σ , respectively, when including the production target, and 3.7 σ and 5.2 σ , respectively, when excluding the target. The estimated mean values of the invariant mass for d + π − and t + π − signal were 2059.3 ± 1.3 ± 1.7 MeV/c 2 and 2993.7 ± 1.3 ± 0.6 MeV/c 2 respectively. The lifetime estimation of the possible bound states yielding to d + π − and t + π − final states were deduced to be as 181 +30 −24 ± 25 ps and 190 +47 −35 ± 36 ps, respectively. Those final states may be interpreted as the two-body and three-body decay modes of a neutral bound state of two neutrons and a hyperon, 3 n.A hypernucleus, a subatomic system with at least one bound hyperon, is studied in order to deduce the information about fundamental hyperon (Y )-nucleon (N) and Y -Y interactions. Hypernuclei have been mainly studied by means of the missing-mass experiments with secondary-meson and primary-electron beams [1] and earlier with emulsion techniques and bubble chambers [2]. In these experiments, a variety of hypernuclei with the lightest hyperon, the hyperon, were produced and identified. However, the isospin of the produced hypernuclei is similar to that of the target nucleus in these experiments, since they are produced by the elementary process of converting one nucleon in the target nucleus into a hyperon.Information on the Λ-N interaction was already inferred from the hypernuclei in the vicinity of the β stability line * c.rappold@gsi.de † t.saito@gsi.de [3][4][5][6]. The nature of the Λ-N interaction for neutron-rich hypernuclei, in which the ΛN -ΣN coupling three-body force may play a role as described theoretically in Refs. [7-11], has not yet been studied in detail since only a few cases were observed, 10 Li [12], 7 He [13], and 6 H [14]. We thus search for other neutron-rich hypernuclei by means of induced reactions of heavy-ion beams.Neutron-and proton-rich hypernuclei can be indeed studied by using projectile fragmentation reactions of heavy-ion beams. In such reactions, a projectile fragment can capture a hyperon produced in the hot participant region to produce a hypernucleus [15][16][17][18][19]. They might also be produced in a multistage process, such as through a Fermi breakup decay of excited heavier hypernuclear spectators, possibly formed in peripheral collisions [19][20][21].We, the HypHI Collaboration, have proposed a series of experiments at the GSI Helmholtz Centre for Heavy Ion Research that would use induced reactions of stable heavy-ion beams and rare-isotope beams to produce 041001-1 0556-2813/2013/88(4)/041001 (6)
A search for new isotopes using in-flight fission of a 345 MeV/nucleon 238 U beam has been carried out at the RI Beam Factory at the RIKEN Nishina Center. Fission fragments were analyzed and identified by using the superconducting in-flight separator BigRIPS. We observed 45 new neutron-rich isotopes: Since the pioneering production of radioactive isotope (RI) beams in the 1980s, 1) studies of exotic nuclei far from stability have been attracting much attention. Neutron-rich exotic nuclei are of particular interest, because new phenomena such as neutron halos, neutron skins, and modifications of shell structure have been discovered.2-5) Furthermore these neutron-rich nuclei are important in relation to astrophysical interests, 6) because many of them play a role in the astrophysical r-process. 7) To make further advances in nuclear science and nuclear astrophysics, it is essential to expand the region of accessible exotic nuclei towards the neutron dripline. In-flight fission of a uranium beam is known to be an excellent mechanism for this purpose, having large production cross sections for neutron-rich exotic nuclei. became operational, in which the superconducting in-flight separator BigRIPS 10,11) has been used for the production of RI beams. The BigRIPS separator is designed as a two-stage separator with large acceptance, so that excellent features of in-flight fission can be exploited. In May 2007, right after the commissioning of the BigRIPS separator, we performed an experiment to search for new isotopes using in-flight fission of a 345 MeV/nucleon 238 U beam, aiming to expand the LETTERS Ã
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.