[1] Observations of ozone (O 3 ) and O 3 precursors taken from aircraft flights over Houston, TX, Nashville, TN; New York, NY; Phoenix, AZ, and Philadelphia, PA show that high concentrations of reactive volatile organic compounds (VOCs) in the Houston atmosphere lead to calculated O 3 production rates that are 2 to 5 times higher than in the other 4 cities even though NO x concentrations are comparable. Within the Houston metropolitan area, concentrations of VOCs and O 3 production rates are highest in the Ship Channel region; the location of one of the largest petrochemical complexes in the world. As a consequence the concentration of O 3 in the Houston metropolitan area has recently exceeded 250 ppb, the highest value observed in the U.S within the past 5 years.
[1] We investigate the sources, prevalence, and fine-particle inorganic composition of biosmoke over the western Pacific Ocean between 24 February and 10 April 2001. The analysis is based on highly time-resolved airborne measurements of gaseous and fineparticle inorganic chemical composition made during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) experiment. At latitudes below approximately 25°N, relatively pure biomass burning plumes of enhanced fine-particle potassium, nitrate, ammonium, light-absorbing aerosols, and CO concentrations were observed in plumes that back trajectories and satellite fire map data suggest originated from biomass burning in southeast Asia. Fine-particle water-soluble potassium (K + ) is confirmed to be a unique biosmoke tracer, and its prevalence throughout the experiment indicates that approximately 20% of the TRACE-P Asian outflow plumes were influenced, to some extent, by biomass or biofuel burning emissions. At latitudes above 25°N, highly mixed urban/industrial and biosmoke plumes, indicated by SO 4 2À and K + , were observed in 5 out of 53 plumes. Most plumes were found in the Yellow Sea and generally were associated with much higher fine-particle loadings than plumes lacking a biosmoke influence. The air mass back trajectories of these mixed plumes generally pass through the latitude range of between 34°and 40°N on the eastern China coast, a region that includes the large urban centers of Beijing and Tianjin. A lack of biomass burning emissions based on fire maps and high correlations between K + and pollution tracers (e.g., SO 4 2À ) suggest biofuel sources. Ratios of fine-particle potassium to sulfate are used to provide an estimate of relative contributions of biosmoke emissions to the mixed Asian plumes. The ratio is highly correlated with fine-particle volume (r 2 = 0.85) and predicts that for the most polluted plume encounter in TRACE-P, approximately 60% of the plume is associated with biosmoke emissions. On average, biosmoke contributes approximately 35-40% to the measured fine inorganic aerosol mass in the mixed TRACE-P plumes intercepted north of 25°N latitude.
Abstract. Utilizing the unique characteristics of the cloud over the Southeast Pacific (SEP) off the coast of Chile during the VOCALS field campaign, we compared satellite remote sensing of cloud microphysical properties against insitu data from multi-aircraft observations, and studied the extent to which these retrieved properties are sufficiently constrained and consistent to reliably quantify the influence of aerosol loading on cloud droplet sizes. After constraining the spatial-temporal coincidence between satellite retrievals and in-situ measurements, we selected 17 non-drizzle comparison pairs. For these cases the mean aircraft profiling times were within one hour of Terra overpasses at both projected and un-projected (actual) aircraft positions for two different averaging domains of 5 km and 25 km. Retrieved quantities that were averaged over a larger domain of 25 km compared better statistically with in-situ observations than averages over a smaller domain of 5 km. Comparison at projected aircraft positions was slightly better than un-projected aircraft positions for some parameters. Overall, both MODISretrieved effective radius and LWP were larger but highly correlated with the in-situ measured effective radius and LWP, e.g., for averaging domains of 5 km, the biases are up to 1.75 µm and 0.02 mm whilst the correlation coefficients are about 0.87 and 0.85, respectively. The observed effective radius difference between the two decreased with increasing cloud drop number concentration (CDNC), and increased with increasing cloud geometrical thickness. Compared to the absolute effective radius difference, the correlations between the relative effective radius difference and CDNC or cloud geometric thickness are weaker. For averaging domains of 5 km and 25 km, the correlation coefficients between MODIS-retrieved and in-situ measured CDNC are 0.91 and 0.93 with fitting slopes of 1.23 and 1.27, respectively. If the cloud adiabaticity is taken into account, better agreements are achieved for both averaging domains (the fitting slopes are 1.04 and 1.07, respectively). Our comparison and sensitivity analysis of simulated retrievals demonstrate that both cloud geometrical thickness and cloud adiabaticity are important factors in satellite retrievals of effective radius and cloud drop number concentration. The large variabilities in cloud geometrical thickness and adiabaticity, the dependencies of cloud microphysical properties on both quantities (as demonstrated in our sensitivity study of simulated retrievals), and the inability to accurately account for either of them in retrievals lead to some uncertainties and biases in satellite retrieved cloud effective radius, cloud liquid water path, and cloud drop number concentration. However, strong correlations between satellite retrievals and in-situ measurements suggest that satellite retrievals of cloud effective radius, cloud liquid water path, and cloud drop number concentration can be used to investigate aerosol indirect effects qualitatively.
[1] Eight inorganic ions in fine aerosol particles (D p < 1.3 mm) were measured on board the NCAR C130 and NASA P-3B aircraft during the 2001 Citation: Lee, Y.-N., et al., Airborne measurement of inorganic ionic components of fine aerosol particles using the particle-intoliquid sampler coupled to ion chromatography technique during ACE-Asia and TRACE-P,
Abstract. The chemical composition of aerosol particles (Dp ≤ 1.5 μm) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO42−, followed by Na+, Cl−, Org (total organics), NH4+, and NO3−, in decreasing order of importance; CH3SO3− (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH4+ to SO42− equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl− deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO42−. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72° W and 76° W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol concentrations were negligible. The very low levels of CH3SO3− observed as well as the correlation between SO42− and NO3− (which is thought primarily anthropogenic) suggest a limited contribution of DMS to SO42− aerosol production during VOCALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.