The performances of a two-dimensional electron gas (2DEG) based planar nanodevice are studied by a two-dimensional-three-dimensional (2D-3D) combined model and an entirely 2D model. In both models, 2DEGs are depicted by 2D ensemble Monte Carlo (EMC) method. However electric field distributions in the devices are obtained by self-consistently solving 2D and 3D Poisson equations for the 2D model and the 2D-3D model, respectively. Simulation results obtained by both models are almost the same at low bias while showing distinguished differences at high bias. The 2D model predicts larger output current and slightly higher threshold voltage of Gunn oscillations. Although the fundamental frequencies of current oscillations obtained by both models are similar, the deviation of wave shape from sinusoidal waveform obtained by the 2D model is more serious than that obtained by 2D-3D model. Moreover, results obtained by the 2D model are more sensitive both to the bias conditions and to the change of device parameters. Interestingly, a look-like second harmonic oscillation has been observed at DC bias. We contribute the origin of divergences in simulation results to the different coupling path of electric field in the two models. And the second-harmonic oscillations at DC bias should be the result of the appearance of concomitant oscillations beside the channel excited by strong electric-field effects.
Using a combined two-dimensional-three-dimensional (2D-3D) ensemble Monte Carlo (EMC) model, the performance of a planar nanochannel device is studied at the terahertz (THz) region. The device is based on a GaN/AlGaN heterostructure in which a two-dimensional electron gas (2DEG) forms at the interface. Simulation results reveal that, at low working frequencies, the performance of the device is almost frequency independent. However, when the working frequency is higher than 0.5 THz, obvious enhancements in the device performance have been observed. The enhancements are characterized by two resonant peaks at frequencies of about 4 THz and 8 THz. Also, the frequency-dependent performance exhibits nonmonotonicity. Further studies show that the performance enhancements can be attributed to the excitations of 2D plasma waves in the device, with the emergence of the above resonant peaks corresponding to the formation of standing plasma waves. Moreover, simulation results show that the device performance increases monotonically with signal amplitude, when the device is unbiased. However, when a DC bias is applied, the performance remains almost unchanged for large signals but is significantly enhanced for small signals. Therefore, the device performance shows a strong nonmonotonic dependence on signal amplitude, and its minimal value occurs when the signal amplitude is only about2times the DC bias.
Using a two-dimensional ensemble Monte Carlo (EMC) method, the steady and transient properties of side-gated nanotransistors with single gate and double gate are studied in detail. Simulation results show that the double-gated nanotransistor has more powerful controlling ability on the channel than the single-gated one. The transient processes of the drain current for the two devices are both about 3 ps, which imply that the working speed of the two devices may reach about 0.3 THz. The detail of transient processes for the double-gated nanotransistor is trivial. But for the single-gated nanotransistor, the drain current response shows obviously oscillating during approaching the next steady state. The phenomenon of drain current oscillations is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.