Ethylene-vinyl alcohol copolymer (EVOH)/clay nanocomposites were prepared via dynamic melt blending. The effect of the processing parameters on blends containing two clay types in different amounts was examined. The blends were characterized with a Brabender plastograph and capillary rheometer, differential scanning calorimetry, dynamic mechanical thermal analysis (DMTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). XRD showed advanced EVOH intercalation within the galleries, whereas TEM images indicated exfoliation, thereby complementing the XRD data. A dilution process with EVOH and clay treatment in an ultrasonic bath before melt blending did not add to the intercalation level. Different trends were observed for the EVOHs containing two different clay treatments, one claimed to be treated for EVOH and the other for amine-cured epoxy. They reflected the differences in the amounts of the strongly interacting polymer for the two nanocomposites. Thermal analysis showed that the melting temperature, crystallization temperature, and heat of fusion of the EVOH matrix sharply decreased with both increasing clay content and processing times. Significantly higher viscosity levels were obtained for the blends in comparison with those of the neat polymer. The DMTA spectra showed higher glass-transition temperatures for the nanocomposites in comparison with those of the neat EVOH. However, at high clay loadings, the glass-transition temperature remained constant, presumably because of an adverse plasticizing effect of the low moleculared mass onium ions treating the clays. The storage modulus improved when clay treated for EVOH was used, and it deteriorated when amine-cured epoxy clay was incorporated, except for the sonicated clay. TGA results showed significant improvements in the blends' thermal stability in comparison with that of the neat EVOH, which, according to TEM, was greater for the intercalated structures rather than for exfoliated ones.
Ethylene‐vinyl alcohol copolymer(EVOH)/clay nanocomposites were prepared via a dynamic melt‐intercalation process. The phase morphology and the crystallization behavior of the nanocomposites were investigated, using DSC, DMTA, XRD and SEM. It was found that the treated clay content and dynamic processing time affect the viscosity of the EVOH/clay mixtures: higher clay contents and longer mixing times result in higher torque/viscosity levels. This is due to the increased interaction of the molten polar matrix (EVOH) with the treated organosilicate surface. Under the dynamic high shearing forces, the polymer penetrates the clay agglomerates/aggregates, intercalates within the organoclay galleries, and finally causes delaniination. Thermal analysis of the EVOH/clay nanocomposites showed that the melting temperature, crystallization temperature and heat of fusion of the EVOH matrix, sharply decrease with increasing both, the clay content and processing time. The intercalation level was characterized by X‐ray diffraction (XRD), which verified an increased gallery height. The DMTA spectra showed that longer processing times resulted in higher damping (E″ intensity) levels of the EVOH/clay composites, indicating higher fractions of the EVOH amorphous phase. However, no Tg changes were seen in spite of the high polymer/treated clay interaction levels, which may be attributed to a plasticizing effect of the low molecular weight organic cations.
Binary blends of two random copolymers, ethylene‐vinyl‐alcohol (EVOH) consisting of different ethylene contents, and copolyamide‐6/6.9 with an approximate 1:1 comonomer ratio, have been prepared via blown film extrusion as films, 20 μm thick. Thermal, dynamic‐mechanical, and rheological properties were determined. It was found that these blends are partially miscible. The‐EVOH‐rich blends exhibit much lower miscibility than the copolyamide‐rich blends. The ethylene content in the EVOH affects the miscibility of the blends: a higher ethylene content results in a lower miscibility. This is due to fewer intermolecular hydrogen bonds between the OH group of the EVOH and the amide group of the copolyamide. The interactions between the blends' components affect their thermal, dynamic‐mechanical and their rheological behavior.
Three-layer coextruded blown (either blend or composite) films, made of low-density polyethylene and linear lowdensity polyethylene (1 : 1 ratio) of identical density, were compared. The tensile properties of both systems are nearly as high as those of the linear polyethylene while high strain rate properties including impact strength and tear resistance of the composite film are superior. Some structural insight was obtained by thermal analysis and thermoelastic measurements. Structure property relationships are discussed in light of the unique behavior, structure, and morphology of linear low-density polyethylene. The two polyethylenes are only compatible to a rather limited extent mainly affecting their blend behavior. However, a strong mutual reinforcement effect was observed.gate the mechanical properties of composite blown films consisting of LLDPE and the con-1182 POLYMER
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.