Abstract. The goal of web mining is relatively simple: provide both computationally and cognitively efficient methods for improving the value of information to users of the WWW. The need for computational efficiency is well-recognized by the data mining community, which sprung from the database community concern for efficient manipulation of large datasets. The motivation for cognitive efficiency is more elusive but at least as important. In as much as cognitive efficiency can be informally construed as ease of understanding, then what is important is any tool or technique that presents cognitively manageable abstractions of large datasets. We present our initial development of a framework for gathering, analyzing, and redeploying web data. Not dissimilar to conventional data mining, the general idea is that good use of web data first requires the careful selection of data (both usage and content data), the deployment of appropriate learning methods, and the evaluation of the results of applying the results of learning in a web application. Our framework includes tools for building, using, and visualizing web abstractions. We present an example of the deployment of our framework to navigation improvement. The abstractions we develop are called Navigation Compression Models (NCMs), and we show a method for creating them, using them, and visualizing them to aid in their understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.