Abstract. Quantifying the fluxes of carbon dioxide (CO2) between the atmosphere and terrestrial ecosystems in all their diversity, across the continents, is important and urgent for implementing effective mitigating policies. Whereas much is known for Europe and North America for instance, in comparison, South Asia, with 1.6 billion inhabitants and considerable CO2 fluxes, remained terra incognita in this respect. We use regional measurements of atmospheric CO2 aboard a Lufthansa passenger aircraft between Frankfurt (Germany) and Chennai (India) at cruise altitude, in addition to the existing network sites for 2008, to estimate monthly fluxes for 64-regions using Bayesian inversion and transport model simulations. The applicability of the model's transport parameterization is confirmed using SF6, CH4 and N2O simulations for the CARIBIC datasets. The annual amplitude of carbon flux obtained by including the aircraft data is twice as large as the fluxes simulated by a terrestrial ecosystem model that was applied to prescribe the fluxes used in the inversions. It is shown that South Asia sequestered carbon at a rate of 0.37 ± 0.20 Pg C yr−1 (1 Pg C = 1015 g of carbon in CO2) for the years 2007 and 2008. The seasonality and the strength of the calculated monthly fluxes are successfully validated using independent measurements of vertical CO2 profiles over Delhi and spatial variations at cruising altitude over Asia aboard Japan Airlines passenger aircraft.
Quantifying the fluxes of carbon dioxide (CO2) between the atmosphere and terrestrial ecosystems in all their diversity, across the continents, is important and urgent for implementing effective mitigating policies. Whereas much is known for Europe and North America for instance, in comparison, South Asia, with 1.6 billion inhabitants and considerable CO2 fluxes, remained terra incognita in this respect. We use regional measurements of atmospheric CO2 aboard a Lufthansa passenger aircraft between Frankfurt (Germany) and Chennai (India) at cruise altitude, in addition to the existing network sites for 2008, to estimate monthly fluxes for 64-regions using Bayesian inversion and transport model simulations. The applicability of the model's transport parameterization is confirmed using SF6, CH4 and N2O simulations for the CARIBIC datasets. The annual carbon flux obtained by including the aircraft data is twice as large as the fluxes simulated by a terrestrial ecosystem model that was applied to prescribe the fluxes used in the inversions. It is shown that South Asia sequestered carbon at a rate of 0.37±0.20 Pg C yr−1 (1Pg C = 1015 g of carbon in CO2) for the years 2007 and 2008. The seasonality and the strength of the calculated monthly fluxes are successfully validated using independent measurements of vertical CO2 profiles over Delhi and spatial variations at cruising altitude over Asia aboard Japan Airlines passenger aircraft
Abstract. Numerical simulation and validation of threedimensional structure of atmospheric carbon dioxide (CO 2 ) is necessary for quantification of transport model uncertainty and its role on surface flux estimation by inverse modeling. Simulations of atmospheric CO 2 were performed using four transport models and two sets of surface fluxes compared with an aircraft measurement dataset of Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL), covering various latitudes, longitudes, and heights. Under this transport model intercomparison project, spatiotemporal variations of CO 2 concentration for 2006-2007 were analyzed with a three-dimensional perspective. Results show that the models reasonably simulated vertical profiles and seasonal variations not only over northern latitude areas but also over the tropics and southern latitudes. From CONTRAIL measurements and model simulations, intrusion of northern CO 2 in to the Southern Hemisphere, through the upper troposphere, was confirmed. Furthermore, models well simulated the vertical propagation of seasonal variation in the northern free troposphere. However, significant model-observation discrepancies were found in Asian regions, which are attributable to uncertainty of the surface CO 2 flux data. In summer season, differences in latitudinal gradients by the fluxes are comparable to or greater Correspondence to: Y. Niwa (yniwa@mri-jma.go.jp) than model-model differences even in the free troposphere. This result suggests that active summer vertical transport sufficiently ventilates flux signals up to the free troposphere and the models could use those for inferring surface CO 2 fluxes.
Abstract. Global and regional sources and sinks of carbon across the earth's surface have been studied extensively using atmospheric carbon dioxide (CO2) observations and atmospheric chemistry-transport model (ACTM) simulations (top-down/inversion method). However, the uncertainties in the regional flux distributions remain unconstrained due to the lack of high-quality measurements, uncertainties in model simulations, and representation of data and flux errors in the inversion systems. Here, we assess the representation of data and flux errors using a suite of 16 inversion cases derived from a single transport model (MIROC4-ACTM) but different sets of a priori (bottom-up) terrestrial biosphere and oceanic fluxes, as well as prior flux and observational data uncertainties (50 sites) to estimate CO2 fluxes for 84 regions over the period 2000–2020. The inversion ensembles provide a mean flux field that is consistent with the global CO2 growth rate, land and ocean sink partitioning of −2.9 ± 0.3 (± 1σ uncertainty on the ensemble mean) and −1.6 ± 0.2 PgC yr−1, respectively, for the period 2011–2020 (without riverine export correction), offsetting about 22 %–33 % and 16 %–18 % of global fossil fuel CO2 emissions. The rivers carry about 0.6 PgC yr−1 of land sink into the deep ocean, and thus the effective land and ocean partitioning is −2.3 ± 0.3 and −2.2 ± 0.3, respectively. Aggregated fluxes for 15 land regions compare reasonably well with the best estimations for the 2000s (∼ 2000–2009), given by the REgional Carbon Cycle Assessment and Processes (RECCAP), and all regions appeared as a carbon sink over 2011–2020. Interannual variability and seasonal cycle in CO2 fluxes are more consistently derived for two distinct prior fluxes when a greater degree of freedom (increased prior flux uncertainty) is given to the inversion system. We have further evaluated the inversion fluxes using meridional CO2 distributions from independent (not used in the inversions) aircraft and surface measurements, suggesting that the ensemble mean flux (model–observation mean ± 1σ standard deviation = −0.3 ± 3 ppm) is best suited for global and regional CO2 flux budgets than an individual inversion (model–observation 1σ standard deviation = −0.35 ± 3.3 ppm). Using the ensemble mean fluxes and uncertainties for 15 land and 11 ocean regions at 5-year intervals, we show promise in the capability to track flux changes toward supporting the ongoing and future CO2 emission mitigation policies.
Numerical simulation and validation of three-dimensional structure of atmospheric carbon dioxide (CO2) is necessary for quantification of transport model uncertainty and its role on surface flux estimation by inverse modeling. Simulations of atmospheric CO2 were performed using four transport models and two sets of surface fluxes compared with an aircraft measurement dataset of Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL), covering various latitudes, longitudes, and heights. Under this transport model intercomparison project, spatiotemporal variations of CO2 concentration for 2006–2007 were analyzed with a three-dimensional perspective. Results show that the models reasonably simulated vertical profiles and seasonal variations not only over northern latitude areas but also over the tropics and southern latitudes. From CONTRAIL measurements and model simulations, intrusion of northern CO2 in to the Southern Hemisphere, through the upper troposphere, was confirmed. Furthermore, models well simulated the vertical propagation of seasonal variation in the northern free-troposphere. However, significant model–observation discrepancies were found in Asian regions, which are attributable to uncertainty of the surface CO2 flux data. The models consistently underestimated the north-tropics mean gradient of CO2 both in the free-troposphere and marine boundary layer during boreal summer. This result suggests that the north-tropics contrast of annual mean net non-fossil CO2 flux should be greater than 2.7 Pg C yr−1 for 2007
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.