BackgroundThe morphotaxonomy of Rhipicephalus microplus complex has been challenged in the last few years and prompted many biologists to adopt a DNA-based method for distinguishing the members of this group. In the present study, we used a mitochondrial DNA analysis to characterise the genetic assemblages, population structure and dispersal pattern of R. microplus from Southeast Asia, the region where the species originated.MethodsA phylogeographic analysis inferred from the 16S rRNA and cytochrome oxidase subunit I (COI) genes was performed with five populations of R. microplus collected from cattle in Malaysia. Malaysian R. microplus sequences were compared with existing COI and 16S rRNA haplotypes reported globally in NCBI GenBank.ResultsA total of seven and 12 unique haplotypes were recovered by the 16S rRNA and COI genes, respectively. The concatenated sequences of both 16S rRNA and COI revealed 18 haplotypes. Haplotype network and phylogenetic analyses based on COI+16S rRNA sequences revealed four genetically divergent groups among Malaysian R. microplus. The significantly low genetic differentiation and high gene flow among Malaysian R. microplus populations supports the occurrence of genetic admixture. In a broader context, the 16S rRNA phylogenetic tree assigned all isolates of Malaysian R. microplus into the previously described African/the Americas assemblage. However, the COI phylogenetic tree provides higher resolution of R. microplus with the identification of three main assemblages: clade A sensu Burger et al. (2014) comprises ticks from Southeast Asia, the Americas and China; clade B sensu Burger et al. (2014) is restricted to ticks that originated from China; and clade C sensu Low et al. (2015) is a new genetic assemblage discovered in this study comprising ticks from India and Malaysia.ConclusionsWe conclude that the R. microplus complex consisting of at least five taxa: R. australis, R. annulatus, R. microplus clade A sensu Burger et al. (2014), R. microplus clade B sensu Burger et al. (2014) and the new taxon, R. microplus clade C sensu Low et al. (2015). The use of COI as the standard genetic marker in discerning the genetic assemblages of R. microplus from a broad range of biogeographical regions is proposed.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-015-0956-5) contains supplementary material, which is available to authorized users.
Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs.
Living fossils are lineages that have retained plesiomorphic traits through long time periods. It is expected that such lineages have both originated and diversified long ago. Such expectations have recently been challenged in some textbook examples of living fossils, notably in extant cycads and coelacanths. Using a phylogenetic approach, we tested the patterns of the origin and diversification of liphistiid spiders, a clade of spiders considered to be living fossils due to their retention of arachnid plesiomorphies and their exclusive grouping in Mesothelae, an ancient clade sister to all modern spiders. Facilitated by original sampling throughout their Asian range, we here provide the phylogenetic framework necessary for reconstructing liphistiid biogeographic history. All phylogenetic analyses support the monophyly of Liphistiidae and of eight genera. As the fossil evidence supports a Carboniferous Euramerican origin of Mesothelae, our dating analyses postulate a long eastward over-land dispersal towards the Asian origin of Liphistiidae during the Palaeogene (39-58 Ma). Contrary to expectations, diversification within extant liphistiid genera is relatively recent, in the Neogene and Late Palaeogene (4-24 Ma). While no over-water dispersal events are needed to explain their evolutionary history, the history of liphistiid spiders has the potential to play prominently in vicariant biogeographic studies.
Predator-prey interactions play important roles in ecological communities. Personality, consistent inter-individual differences in behaviour, of predators, prey or both are known to influence inter-specific interactions. An individual may also behave differently under the same situation and the level of such variability may differ between individuals. Such intra-individual variability (IIV) or predictability may be a trait on which selection can also act. A few studies have revealed the joint effect of personality types of both predators and prey on predator foraging performance. However, how personality type and IIV of both predators and prey jointly influence predator foraging performance remains untested empirically. Here, we addressed this using a specialized spider-eating jumping spider, Portia labiata (Salticidae), as the predator, and a jumping spider, Cosmophasis umbratica, as the prey. We examined personality types and IIVs of both P. labiata and C. umbratica and used their inter- and intra-individual behavioural variation as predictors of foraging performance (i.e., number of attempts to capture prey). Personality type and predictability had a joint effect on predator foraging performance. Aggressive predators performed better in capturing unpredictable (high IIV) prey than predictable (low IIV) prey, while docile predators demonstrated better performance when encountering predictable prey. This study highlights the importance of the joint effect of both predator and prey personality types and IIVs on predator-prey interactions.
ABSTRACT. Pastoralism and predation are two major concomitantly known facts and matters of concern for conservation biologists worldwide. Pastoralist-predator conflict constitutes a major social-ecological concern in the Pamir mountain range encompassing Afghanistan, Pakistan, and Tajikistan, and affects community attitudes and tolerance toward carnivores. Very few studies have been conducted to understand the dynamics of livestock predation by large carnivores like snow leopards (Panthera uncia) and wolves (Canis lupus), owing to the region's remoteness and inaccessibility. This study attempts to assess the intensity of livestock predation (and resulting perceptions) by snow leopards and wolves across the Afghani, Pakistani, and Tajik Pamir range during the period January 2008-June 2012. The study found that livestock mortality due to disease is the most serious threat to livestock (an average 3.5 animal heads per household per year) and ultimately to the rural economy (an average of US$352 per household per year) as compared to predation (1.78 animal heads per household per year, US$191) in the three study sites. Overall, 1419 (315 per year) heads of livestock were reportedly killed by snow leopards (47%) and wolves (53%) in the study sites. People with comparatively smaller landholdings and limited earning options, other than livestock rearing, expressed negative attitudes toward both wolves and snow leopards and vice versa. Education was found to be an effective solution to dilute people's hatred for predators. Low public tolerance of the wolf and snow leopard in general explained the magnitude of the threat facing predators in the Pamirs. This will likely continue unless tangible and informed conservation measures like disease control and predation compensation programs are taken among others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.