Changes in resting-state brain networks after cognitive-behavioral therapy for chronic pain Abstract Background. Cognitive-behavioral therapy (CBT) is thought to be useful for chronic pain, with the pathology of the latter being closely associated with cognitive-emotional components. However, there are few resting-state functional magnetic resonance imaging (RfMRI) studies. We used the independent component analysis method to examine neural changes after CBT and to assess whether brain regions predict treatment response. Methods. We performed R-fMRI on a group of 29 chronic pain (somatoform pain disorder) patients and 30 age-matched healthy controls (T1). Patients were enrolled in a weekly 12-session group CBT (T2). We assessed selected regions of interest that exhibited differences in intrinsic connectivity network (ICN) connectivity strength between the patients and controls at T1, and compared T1 and T2. We also examined the correlations between treatment effects and rs-fMRI data.Results. Abnormal ICN connectivity of the orbitofrontal cortex (OFC) and inferior parietal lobule within the dorsal attention network (DAN) and of the paracentral lobule within the sensorimotor network in patients with chronic pain normalized after CBT. Higher ICN connectivity strength in the OFC indicated greater improvements in pain intensity. Furthermore, ICN connectivity strength in the dorsal posterior cingulate cortex (PCC) within the DAN at T1 was negatively correlated with CBT-related clinical improvements. Conclusions. We conclude that the OFC is crucial for CBT-related improvement of pain intensity, and that the dorsal PCC activation at pretreatment also plays an important role in improvement of clinical symptoms via CBT.
Individual differences in cognitive function have been shown to correlate with brain-wide functional connectivity, suggesting a common foundation relating connectivity to cognitive function across healthy populations. However, it remains unknown whether this relationship is preserved in cognitive deficits seen in a range of psychiatric disorders. Using machine learning methods, we built a prediction model of working memory function from whole-brain functional connectivity among a healthy population (N = 17, age 19-24 years). We applied this normative model to a series of not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/222281 doi: bioRxiv preprint first posted online 2 independently collected resting state functional connectivity datasets (N = 968), involving multiple psychiatric diagnoses, sites, ages (18-65 years), and ethnicities. We found that predicted working memory ability was correlated with actually measured working memory performance in both schizophrenia patients (partial correlation, ρ = 0.25, P = 0.033, N = 58) and a healthy population (partial correlation, ρ = 0.11, P = 0.0072, N = 474). Moreover, the model predicted diagnosis-specific severity of working memory impairments in schizophrenia (N = 58, with 60 controls), major depressive disorder (N = 77, with 63 controls), obsessive-compulsive disorder (N = 46, with 50 controls), and autism spectrum disorder (N = 69, with 71 controls) with effect sizes g = -0.68, -0.29, -0.19, and 0.09, respectively. According to the model, each diagnosis's working memory impairment resulted from the accumulation of distinct functional connectivity differences that characterizes each diagnosis, including both diagnosisspecific and diagnosis-invariant functional connectivity differences. Severe working memory impairment in schizophrenia was related not only with fronto-parietal, but also widespread network changes. Autism spectrum disorder showed greater negative connectivity that related to improved working memory function, suggesting that some non-normative functional connections can be behaviorally advantageous. Our results suggest that the relationship between brain connectivity and working memory function in healthy populations can be generalized across multiple psychiatric diagnoses. This approach may shed new light on behavioral variances in psychiatric disease and suggests that whole-brain functional connectivity can provide an individual quantitative behavioral profile in a range of psychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.