Double perovskite SmBa0.5Sr0.5Co2O5+δ(70%)+Ce0.8Sm0.2O1.9(30%) as SBSC70+SDC30 cathode was fabricated using solid-state reaction technique and investigated as cathode material for solid oxide fuel cells operating at intermediate temperature (IT-SOFC). This work aims to determine the effect of SDC electrolyte doping into double perovskite cathodes on SOFC performance. LS-POP carried out particle size distribution analysis, and the equipment operates on a light source (HE-Ne laser) basis. XRD was used to determine the structure of the cathode powder, and SEM was used to analyze the microstructure morphology. Symmetrical cells were tested using a potentiostat Voltalab PGZ 301. The distribution of particle size for the SBSC70+SDC30 cathode was in the range of 1.41-2.03 µm. The polarization resistance (Rp) value of SBSC70+SDC30 cathode decreases with increasing temperature from 1.22 cm2 at 600°C to 0.21 cm2 at 800°C. The SBSC70+SDC30 activation energy (Ea) for Rp was 117. 3 kJ mol−1. From the overall results, double perovskite SBSC70+SDC30 cathode has potential as a cathode of medium temperature SOFC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.