Aims. Our aim is to determine the distance of outer Galaxy star-forming complexes in order to model the kinematic structure of our Galaxy. Methods. We searched for exciting star(s) of HII regions, with poor or unknown stellar distance, in the second and third galactic quadrants. We carried out spectroscopic and photometric (when necessary) observations in order to establish their spectral type and their U, B and V magnitudes. From these data, complemented with literature data, we determine the spectro-photometric distance of their associated complexes. Results. We (re)established the stellar distance of 23 star forming complexes. Reinvestigating the kinematics of the Perseus and Cygnus arms, we determined the velocity departures from circular rotation and we interpreted them as streaming motions in the spiral arms. Indeed, in addition to the Perseus arm where such departures were known for a long time, we added evidence for velocity deviations in the Cygnus arm. Most significant is that we found the opposite sign for these departures in the Perseus and Cygnus arms, which suggests that the co-rotation radius is located between these two arms at ∼13 kpc from the galactic center.
Abstract. The detailed velocity field of the ionized hydrogen has been observed between l = 301• and l = 324• as part of an Hα Survey of the southern Milky Way. Analysis of the Hα profiles shows six different velocity components. These Hα observations, combined with multiwavelength and stellar data, are used to find the most probable distances of the different gas layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.