A novel microcomputer-based ultrasonic distance measurement system is presented. This study proposes an efficient algorithm which combines both the amplitude modulation (AM) and the phase modulation (PM) of the pulse-echo technique. The proposed system can reduce error caused by inertia delay and amplitude attenuation effect when using the AM and PM envelope square wave form (APESW). The APESW ultrasonic driving wave form causes a phase inversion phenomenon in the relative wave form of the receiver. The phase inversion phenomenon sufficiently identifies the "measurement pulse" in the received wave forms, which can be used for accurate time-of-flight (TOF) measurement. In addition, combining a countertechnique to compute the phase shifts of the last cycle for TOF, the presented system can obtain distance resolution of 0.1% of the wavelength corresponding to the 40 kHz frequency of the ultrasonic wave. The standard uncertainty of the proposed distance measurement system is found to be 0.2 mm at a range of 50-500 mm. The APESW signal generator and phase detector of this measuring system are designed on a complex programmable logic device, which is used to govern the TOF measurement and send the data to a personal computer for distance calibration and examination. The main advantages of this APESW system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.
A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40 kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39 degrees C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.
This paper presents a simple alternative method and system for noninvasive respiratory airflow monitoring. The proposed system uses a piezoceramic transducer to measure respiratory airflow. When a piezoceramic transducer is impacted by respiratory airflow, there is a piezoelectric and a pyroelectric response to pressure and thermal airflow fluctuations. In this study, the selected transducer's response output is dominated by the pyroelectricity factor. Therefore, the piezoelectric effect is not significant and can be ignored in this study. Using the transducer's pyroelectricity to measure thermal flow variations, a subject's respiratory rate and respiratory air volumetric flow rate can be monitored. The proposed system was evaluated for accuracy and response time using quiet and postphysical exertion breathing modes. Using the pneumotach system as a benchmark, the proposed system's respiratory rate measurement accuracy for the two breathing modes is approximately 98.78%. In addition, the proposed system's output voltage is highly correlated with the respiratory volumetric flow rate measured by the selected pneumotach (r2=0.9783). The average correlation coefficient between the pneumotach system's output waveform and the proposed system is approximately 0.9389. Moreover, the proposed system and the selected pneumotach have almost the same rapid response time to respiratory airflow. When compared to a temperature measurement thermistor system, the thermistor on average is approximately 25.3 ms slower than the proposed system. Furthermore, compared to the selected screen-type pneumotach system, the proposed system simplifies the respiration monitoring requirements. Instead of sensing the pressure drop across a mesh screen, like the screen-type pneumotach, it measures respiration at one point within the respiratory airflow. The proposed system benefits from simplified processing circuits and a mesh-free design. The advantages of this new respiratory airflow measurement method are fast response time, high accuracy, low cost, and ease of implementation.
Previous studies used fixed wavelength modulated light to demonstrate the relationship between critical flicker frequency threshold (CFFT) and the factors of the subjects. We address a method to assess the whole human visual spectral sensitivity curve (with the visible range of wavelength) to CFFT by frequency modulated light. The color sensitivity curve of three cones of human eyes is discussed as well as the hardware design of the assessment system is provided. The result shows that this system could be successfully used to experiment the relationship between the stimulus wavelength and the CFFT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.