We present a detailed non-spherical modeling of dark matter halos on the basis of a combined analysis of the high-resolution halo simulations (12 halos with N ∼ 10 6 particles within their virial radius) and the large cosmological simulations (5 realizations with N = 512 3 particles in a 100h −1 Mpc boxsize). The density profiles of those simulated halos are well approximated by a sequence of the concentric triaxial distribution with their axis directions being fairly aligned. We characterize the triaxial model quantitatively by generalizing the universal density profile which has previously been discussed only in the framework of the spherical model. We obtain a series of practically useful fitting formulae in applying the triaxial model; the mass and redshift dependence of the axis ratio, the mean of the concentration parameter, and the probability distribution functions of the the axis ratio and the concentration parameter. These accurate fitting formulae form a complete description of the triaxial density profiles of halos in Cold Dark Matter models. Our current description of the dark halos will be particularly useful in predicting a variety of nonsphericity effects, to a reasonably reliable degree, including the weak and strong lens statistics, the orbital evolution of galactic satellites and triaxiality of galactic halos, and the non-linear clustering of dark matter. In addition, this provides a useful framework for the non-spherical modeling of the intra-cluster gas, which is crucial in discussing the gas and temperature profiles of X-ray clusters and the Hubble constant estimated via the Sunyaev -Zel'dovich effect.
LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) is a Chinese national scientific research facility operated by National Astronomical Observatories, Chinese Academy of Sciences (NAOC). After two years of commissioning beginning in 2009, the telescope, instruments, software systems and operations are nearly ready to begin the main science survey. Through a spectral survey of millions of objects in much of the northern sky, LAMOST will enable research in a number of contemporary cutting edge topics in astrophysics, such as: discovery of the first generation stars in the Galaxy, pinning down the formation and evolution history of galaxies especially the Milky Way and its central massive black hole, looking for signatures of dark matter distribution and possible sub-structures in the Milky Way halo. To maximize the scientific potential of the facility, wide national participation and international collaboration has been emphasized. The survey has two major components: the LAMOST ExtraGAlactic Survey (LEGAS), and the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE). Until LAMOST reaches its full capability, the LEGUE portion of the survey will use the available observing time, starting in 2012. An overview of the LAMOST project and the survey that will be carried out in next five to six years is presented in this paper. The science plan for the whole LEGUE survey, instrumental specifications, site conditions, the descriptions of the current on-going pilot survey, including its footprints and target selection algorithm, will be presented as separate papers in this volume.
In a six-year program started in July 2014, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d A (z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼ 195, 000 new emission line galaxy redshifts, we expect BAO measurements of d A (z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically-confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d A (z) and H(z), respectively. Finally, with 60,000 new quasars and reobservation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d A (z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion (RSD) measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS. eBOSS 3 confidence, where w is the ratio of pressure to energy density for dark energy. Thus, current observations are generally consistent with the simplest picture where dark energy is described completely by Einstein's cosmological constant (Λ).New precise observations can unravel the origin of the accelerating universe; specifically, to determine if cosmic acceleration is caused by deviations in General Relativity (GR) on large scales or by a new form of (dark) energy. It is possible to decouple scenarios of acceleration that require dark energy from those that require modifications to GR by independently probing both cosmic expansion history and the structure growth rate. Four primary observational techniques are generally accepted as the most powerful toward obtaining that goal (e.g. Albrech...
We perform a series of high-resolution N-body simulations designed to examine the density profiles of dark matter halos. From 12 simulated halos ranging in mass from 2x1012 to 5x1014 h-1 M middle dot in circle (represented by approximately 1 million particles within the virial radius), we find a clear systematic correlation between the halo mass and the slope of the density profile at 1% of the virial radius, in addition to the variations of the slope among halos of similar mass. More specifically, the slope is approximately -1.5, -1.3, and -1.1 for galaxy-, group-, and cluster-mass halos, respectively. While we confirm the earlier simulation results that the inner slope is steeper than the universal profile originally proposed by Navarro, Frenk, & White, this mass dependence is inconsistent with several analytical arguments attempting to link the inner slope with the primordial index of the fluctuation spectrum. Thus, we conclude that the dark matter density profiles, especially in the inner region, are not universal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.