BackgroundIdentification of genes underlying drought tolerance (DT) quantitative trait loci (QTLs) will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL.ResultsSeventy five single nucleotide polymorphism (SNP) and conserved intron spanning primer (CISP) markers were developed from available expressed sequence tags (ESTs) using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG) 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B) were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions.ConclusionsWe have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene-based markers represent an important resource for identification of candidate genes for other mapped abiotic stress QTLs in pearl millet. They also provide a resource for initiating association studies using candidate genes and also for comparing the structure and function of distantly related plant genomes such as other Poaceae members.
A mapping population of 104 F(3) lines of pearl millet, derived from a cross between two inbred lines H 77/833-2 x PRLT 2/89-33, was evaluated, as testcrosses on a common tester, for traits determining grain and stover yield in seven different field trials, distributed over 3 years and two seasons. The total genetic variation was partitioned into effects due to season (S), genotype (G), genotype x season interaction (G x S), and genotype x environment-within-season interaction [G x E(S)]. QTLs were determined for traits for their G, G x S, and G x E(S) effects, to assess the magnitude and the nature (cross over/non-crossover) of environmental interaction effects on individual QTLs. QTLs for some traits were associated with G effects only, while others were associated with the effects of both G and G x S and/or G, G x S and G x E(S) effects. The major G x S QTLs detected were for flowering time (on LG 4 and LG 6), and mapped to the same intervals as G x S QTLs for several other traits (including stover yield, harvest index, biomass yield and panicle number m(-2)). All three QTLs detected for grain yield were unaffected by G x S interaction however. All three QTLs for stover yield (mapping on LG 2, LG 4 and LG 6) and one of the three QTLs for grain yield (mapping on LG 4) were also free of QTL x E(S) interactions. The grain yield QTLs that were affected by QTL x E(S) interactions (mapping on LG 2 and LG 6), appeared to be linked to parallel QTL x E(S) interactions of the QTLs for panicle number m(-2) on (LG 2) and of QTLs for both panicle number m(-2) and harvest index (LG 6). In general, QTL x E(S) interactions were more frequently observed for component traits of grain and stover yield, than for grain or stover yield per se.
In India, millions of tones of livestock excreta are produced. Our study explores the potential of an epigeic earthworm Eisenia foetida to compost different livestock excreta (cow, buffalo, horse, donkey, sheep, goat and camel) into value added product (vermicompost) at the laboratory scale. Vermicomposting resulted in lowering of pH, electrical conductivity, potassium and C:N ratio and increase in nitrogen and phosphorus contents. Total K was lower in the final cast than in the initial feed. C:N ratios of the vermicomposts ranged from 16.2 ± 2.17 to 75.4 ± 6.84. Microbial activity measured as dehydrogenase activity in buffalo, donkey and camel wastes increased with time up to day 90. But in sheep and goat wastes, maximum dehydrogenase activity was recorded on day 60 and decreased thereafter. The cocoons and hatchlings production by Eisenia foetida in different excreta were also investigated. The greatest number and biomass of hatchlings was recorded in horse excreta followed by cow, goat and sheep excreta. Thus, cow, horse, sheep and goat excreta show potential as good substrates in vermicomposting using Eisenia foetida, although further research is required to explore the feasibility of use of
The requirement for simultaneous increases in stover as well as grain yields in pearl millet in arid zone environments means that conventional selection for grain yield improvement through increased harvest index (HI) is not applicable to such environments. In addition, there is a need to retain the adaptive traits present in local landrace germplasm, so that new cultivars for the arid zone do not trade increased productivity for reduced yield stability and increased risk of crop failure. This research was designed to test the hypothesis that it will be possible to meet these requirements by exploiting heterosis for overall biomass production in topcross hybrids (TCH) made with adapted, landrace-derived pollinators and dual purpose male-sterile seed parents, which partition the extra biomass of their hybrids equally to grain and stover. General combining ability (GCA) estimates for seven landrace-derived populations/varieties, derived from multi-environment tests in arid zone environments, indicated that selection history played a large role in determining GCA for both biomass and HI, with prior selection (for grain yield) favoring GCA for HI at the expense of GCA for biomass. A similar analysis of a set of male-sterile seed parents indicated a wide range of GCA for both grain and stover yields, with a similar tradeoff of GCA for one trait against GCA for the other. It was, however, possible to identify several parental lines with a positive GCA for biomass, achieved by a positive GCA for growth rate, and neutral GCA for HI, resulting in positive/ neutral GCA for both stover and grain yields. A limited test of the ability of parental GCA to predict heterosis in TCH indicated that heterosis for stover yield was closely related to pollinator GCA for stover yield, and heterosis for grain yield was related to both pollinator and A-line GCA for HI. The same test confirmed the original hypothesis that crosses of parents with positive GCA for biomass/growth rate and neutral GCA for HI could produce TCH with positive heterosis for grain yield without an off-setting negative heterosis for stover yield. The frequency of such parental lines was limited, however. #
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.