Physics related to fast ions in magnetically confined fusion plasmas is a very important issue, since these particles will play an important role in future burning plasmas. Indeed, they will act as primary heating source and will sustain the self-ignited condition. To measure the fast ion slowingdown times in a magnetohydrodynamic-quiescent plasmas in different scenarios, very short pulses of a deuterium neutral beam, so-called "blip," with duration of about 5 ms were tangentially coinjected into a deuterium plasmas at the HuanLiuqi-2A (commonly referred to as HL-2A) tokamak [L. W. Yan, Nucl. Fusion 51, 094016 (2011)]. The decay rate of 2.45 MeV D-D fusion neutrons produced by beam-plasma reactions following neutral beam termination was measured by means of a 235 U fission chamber. Experimental results were compared with those predicted by a classical slowing-down model. These results show that the fast ions are well confined with a peaked profile and the ions are slowed down classically without significant loss in the HL-2A tokamak. Moreover, it has been observed that during electron cyclotron resonance heating the fast ions have a longer slowing-down time and the neutron emission rate decay time becomes longer. V C 2012 American Institute of Physics. [http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.