The objectives of this study were to determine the differential incorporation of various omega-3 (n-3) fatty acids (FAs) supplemented to dairy cows into ovarian compartments and assess the effects on IVF. Forty-two 256-day pregnant cows were supplemented with encapsulated fats, in treatments designated as i) SFA -saturated fat at 240 and 560 g/day per cow, prepartum and post partum (PP) respectively; ii) FLX -flaxseed oil at 300 and 700 g/day per cow prepartum and PP respectively; and iii) FO -fish oil at 300 and 700 g/day per cow prepartum and PP respectively. Commencing at 60 days in lactation, ovum pickup (OPU) was performed twice weekly (20 sessions; five cows per group) and in vitro maturation and IVF were conducted. The proportion of a-linolenic acid (ALA) was greater in follicular fluid (FF), granulosa cells, and cumulus-oocyte complexes (COCs) of FLX cows than in other groups (P!0.001). The proportion of docosahexaenoic acid (DHA) was 6.7 times as great in FF of FO as in other groups (P!0.001); docosapentaenoic acid n-3 and DHA were detected in COCs of FO but not in others. The follicle number during OPU was higher in FLX and FO than in SFA (P!0.05), and the oocyte cleavage rate was higher in FLX and FO than in SFA (P!0.01). Also, the percentage of oocytes that developed to blastocysts tended to be higher in both n-3 groups than in SFA (P!0.1). In conclusion, both dietary n-3 FAs similarly improved folliculogenesis and IVF performance; therefore, ALA-rich botanical n-3 seems to be a satisfactory approach to improve oocyte quality.
The objectives were to determine the effects of cooling of high-yielding dairy cows under a hot and humid climate on intake, milk yield, rumination time, and welfare parameters. Forty-two multiparous Israeli Holstein dairy cows were divided into 2 treatment groups and were housed in an open barn divided into 2 pens. The groups were subjected to different cooling schedules, in a crossover design as follows: cows were exposed to 5 or 8 cooling sessions per day (designated 5CS and 8CS, respectively) in the holding area of the milking parlor. Each period lasted 4 wk, and then treatments were switched for another 4-wk period. Each cooling session lasted 45 min, comprising cycles of 30s of showering and 4.5 min of ventilation without showering. Respiration rate and rectal temperature were recorded twice per week (Monday and Thursday) at 0630 and 1600 h. Rumination and lying times were recorded automatically. Rectal temperatures were 0.16 and 1.08°C lower in 8CS than in 5CS cows in the morning and afternoon, respectively. Respiration rate was lower in 8CS than in 5CS cows in the morning (49.1 and 54.6 breaths/min, respectively), and more so in the afternoon (50.0 and 83.0 breaths/min, respectively). Dry matter intake and milk yields were 9.3 and 9.6% higher in the 8CS than in the 5CS cows (27.0 vs. 24.7 and 40.1 vs. 36.6 kg/d, respectively), with no differences in milk fat and protein contents. Daily rumination time was 7.4% longer in the 8CS than in the 5CS (440.1 and 409.6 min/d, respectively); however, rumination time per unit of dry matter or neutral detergent fiber consumed was higher in the 5CS than in the 8CS cows. Although the 8CS cows moved 3 times more to the milking area for extra cooling sessions than the 5CS ones, they spent 9.9 min/d more than the 5CS ones in lying down (484.4 and 474.5 min/d, respectively), and used more of their free time (excluding milking and feeding time) in resting than the 5CS cows: 52.0 and 43.9%, respectively. It appears that increasing the cooling frequency from 5 to 8 times per day improved their feeling of welfare, so they could spend more time lying and ruminating. In conclusion, increasing the cooling frequency of high-yielding dairy cows under hot and humid conditions from 5 to 8 times a day increased their intake and milk yield, and lowered their respiration rate and rectal temperature. Moreover, the 8CS cows spent more time resting than 5CS cows, an indication that increasing cooling frequency improved animal welfare.
Adipose tissue has a central role in the regulation of metabolism in dairy cows, and many proteins expressed in this tissue are involved in metabolic responses to stress (Peinado et al., 2012) [1]. Environmental heat stress is one of the main stressors limiting production in dairy cattle (Fuquay, 1981; West, 2003) [2], [3], and there is a complex interaction between heat stress and the transition period from late pregnancy to onset of lactation, which is manifested in heat-stressed late-gestation cows (Tao and Dahl, 2013) [4]. We recently defined the proteome of adipose tissue in peripartum dairy cows, identifying 586 proteins of which 18.9% were differentially abundant in insulin-resistant compared to insulin-sensitive adipose tissue (Zachut, 2015) [5]. That study showed that proteomic techniques constitute a valuable tool for identifying novel biomarkers in adipose tissue that are related to metabolic adaptation to stress in dairy cows. The objective of the present work was to examine the adipose tissue proteome under thermo-neutral or seasonal heat stress conditions in late pregnant dairy cows. We have collected subcutaneous adipose tissue biopsies from 10 late pregnant dairy cows during summer heat stress and from 8 late pregnant dairy cows during winter season, and identified and quantified 1495 proteins in the adipose tissues. This dataset of adipose tissue proteome from dairy cows adds novel information on the variety of proteins that are abundant in this tissue during late pregnancy under thermo-neutral as well as heat stress conditions. Differential abundance of 107 (7.1%) proteins was found between summer and winter adipose. These results are discussed in our recent research article (Zachut et al., 2017) [6].
Reducing milk production during early lactation might be of interest to improve the energy balance (EB) of high-yielding dairy cows. Therefore, the objective of this study was to determine how reducing the milking frequency (MF) of high-yielding dairy cows from thrice to twice a day during the first 30 d in milk (DIM) affects yields, intake, efficiency, metabolic status, and carryover effects. To this end, 42 multiparous cows were divided into 2 groups according to their previous lactation performance, parity, and body weight. The control cows were milked 3 times a day (3ML) and the treated cows were milked twice a day (2ML) until 30 DIM and then both groups were milked 3 times a day. Milk samples were taken twice a week from 2 or 3 consecutive milkings until 45 DIM for analysis of milk solids, and both groups were followed until 100 DIM to determine the carryover effects of MF until 30 DIM. Individual dry matter intake (DMI), milk yield, and body weight were recorded daily. Blood samples were taken 3 times weekly from 14 d prepartum until 45 DIM. Milk yield during the first 30 DIM was 8.6% higher (49.3 and 45.4 kg/d, respectively), milk fat percentage was lower (3.96 and 4.27%, respectively), and the yields of all milk solids were higher in the 3ML cows than in the 2ML cows. Dry matter intake and 4% fat-corrected milk were similar between groups. The EB during the first 30 DIM was lower in the 3ML cows than in the 2ML cows, and milk yield, but not 4% fat-corrected milk yield, per unit of DMI was higher in the 3ML cows. No differences were observed between groups from 31 to 100 DIM in milk yield (~56.3 kg/d for both groups), milk solids yield, DMI, or milk/DMI; however, fat percentage was lower and EB was higher in the 3ML cows. Blood glucose concentrations between 0 and 30 DIM were lower and β-hydroxybutyrate concentrations were higher in the 3ML cows than in the 2ML cows, but nonesterified fatty acids concentrations were lower, which may be attributed to the lower clearance frequency of nonesterified fatty acids from the blood stream in the 2ML cows. A lower proportion of the 3ML cows (10%) ovulated ≤15 DIM compared with the 2ML cows (40%), with no beneficial effects on preovulatory follicle characteristics. Reducing the MF from thrice to twice a day during the first 30 DIM improved EB and metabolic status, with only minor effects on production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.