The plastic deformation processes and fracture behavior of a Ti–5Al–5Mo–5V–1Cr–1Fe alloy with bimodal and lamellar microstructures were studied by room-temperature tensile tests with in situ scanning electron microscopy (SEM) observations. The results indicate that a bimodal microstructure has a lower strength but higher ductility than a lamellar microstructure. For the bimodal microstructure, parallel, deep slip bands (SBs) are first noticed in the primary α (αp) phase lying at an angle of about 45° to the direction of the applied tension, while they are first observed in the coarse lath α (αL) phase or its interface at grain boundaries (GBs) for the lamellar microstructure. The β matrix undergoes larger plastic deformation than the αL phase in the bimodal microstructure before fracture. Microcracks are prone to nucleate at the αp/β interface and interconnect, finally causing the fracture of the bimodal microstructure. The plastic deformation is mainly restricted to within the coarse αL phase at GBs, which promotes the formation of microcracks and the intergranular fracture of the lamellar microstructure.
This work focused on the effects of laser energy density on the relative density, microstructure, and microhardness of Inconel 718 alloy manufactured by selective laser melting (SLM). The microstructural architectures, element segregation behavior in the interdendritic region and the evolution of laves phases of the as-SLMed IN718 samples were analyzed by optical metallography (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and electron probe microanalysis (EPMA). The results show that with an increase in the laser volume energy density, the relative density and the microhardness firstly increased and then decreased slightly. It also facilitates the precipitation of Laves phase. The variation of mechanical properties of the alloy can be related to the densification degree, microstructure uniformity, and precipitation phase content of Inconel 718 alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.