IL-25 (IL-17E) is a T-helper cell type 2 (Th2) cytokine best described as a potentiator of Th2 memory responses. Reports of expression of its receptor, IL-25R, on airways structural cells suggest a wider role for IL-25 in remodeling. We hypothesized that IL-25 stimulates local angiogenesis in the asthmatic bronchial mucosa. Immunoreactive IL-25 + , IL-25R + , and CD31 + (endothelial) cells in sections of bronchial biopsies from asthmatics and controls were detected by immunohistochemistry. The effect of IL-25 on angiogenesis was examined using an in vitro assay. Real-time PCR was used to detect expression of IL-25R and VEGF mRNA in cultured human vascular endothelial cells (HUVEC), and a cell proliferation kit (WST-8) was used to measure the effect of IL-25 on HUVEC proliferation. Immunostaining showed that IL-25 + , IL-25R + , and CD31 + /IL-25R + cells were significantly elevated in the bronchial mucosa of asthmatics compared with controls (P < 0.003). In asthmatics, the numbers of IL-25 + cells correlated inversely with the forced expiratory volume in 1 s (r = −0.639; P = 0.01). In vitro, HUVEC constitutively expressed IL-25R, which was up-regulated further by TNF-α. IL-25 and TNF-α also increased expression of VEGF and VEGF receptors. IL-25 increased HUVEC proliferation and the number, length, and area of microvessel structures in a concentration-dependent manner in vitro. VEGF blockade, the PI3K-specific inhibitor LY294002, and the MAPK/ERK1/2 (MEK1/2)-specific inhibitor U0126 all markedly attenuated IL-25-induced angiogenesis, and the inhibitors also reduced IL-25-induced proliferation and VEGF expression. Our findings suggest that IL-25 is elevated in asthma and contributes to angiogenesis, at least partly by increasing endothelial cell VEGF/VEGF receptor expression through PI3K/Akt and Erk/MAPK pathways.
Our data support the hypothesis that IL-25 contributes to elevated bFGF in asthmatic airways by acting on the endothelial cell IL-17RB receptor through PI3K-signalling pathways. Targeting the pathways might benefit therapy of airways remodelling.
Bactericidal/permeability increasing (BPI) is an antibiotic protein which kills Gram-negative bacteria and neutralizes endotoxin. We have previously developed a recombinant adeno-associated virus which contains human BPI amino acid residues 1-199 and Fc fragment of human IgG1 gene (AAV-hBPI-Fc) and shown that the recombinant virus can protect mice from lethal endotoxemia. However, whether AAV-hBPI-Fc can be used in vivo for the long term remains unclear. To address this, we established an adeno-associated virus-containing mouse BPI and Fc fragment genes (muBPI-Fc) and compared antigenicity of these recombinant proteins in murine models. Immunohistochemistry showed the expression of both fusion proteins at injected sites. ELISA and Western blotting showed that the muBPI-Fc protein was detected in serum up to 8 weeks after injection, without generation of autoantibodies against muBPI-Fc. In contrast, expressed hBPI-Fc protein was only detected on the 2nd week, whereas the autoantibody against hBPI-Fc protein occurred in serum from the 4th week to the end of study. muBPI-Fc also reduced production of proinflammatory cytokines and protected mice from endotoxemia and bacteremia. Our data showed that AAV-muBPI-Fc has potential long-term efficacy as an anti-endotoxin and has anti-bacterial activity in mice, suggesting the potential clinical application of AAV-hBPI-Fc, such as in endotoxin shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.