This paper develops an uncertainty propagation analysis method to analyze transmit/receive (T/R) modules with uncertain parameters, such as variability and tolerances in the physical parameters and geometry produced in the manufacturing processes. The method is a combination of the variance decomposition-based sensitivity analysis and the moment-based arbitrary polynomial chaos (MBaPC). First, the electromagnetic simulation model of a practical T/R module is created. Secondly, based on the model, the sensitivity analysis is carried out to determine the sensitive parameters to the amplitude difference and the phase difference between the input and output electromagnetic signal. Thirdly, their four order statistical moments are calculated using the MBaPC. At last, according to the maximum entropy principle, the statistical moments are used to fit the probability distribution functions of the amplitude difference and the phase difference of the T/R module. The results computed by MBaPC have been validated accurate and efficient compared with Monte Carlo simulation approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.