This article describes the recent findings on two-fluid effects on magnetic reconnection in plasmas with variable collisionality in the magnetic reconnection experiment (MRX) [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)]. The MRX device has been upgraded to accommodate a variety of reconnection operation modes and high energy density experiments by increasing its capacitor bank energy and extending the discharge duration. As our experimental operation regime has moved from the collisional to the collision-free, two-fluid effects have become more evident. It is observed that the two-dimensional profile of the neutral sheet is changed significantly from the rectangular shape of the familiar Sweet-Parker type to a double wedge shape as the collisionality is reduced and the reconnection rate increases. The recent evolution of our experimental research from the magnetohydrodynamics (MHD) to the two-fluid analysis is presented to illuminate the physics of Hall MHD in a collision-free reconnection layer. In particular, a clear experimental verification of an out-of-plane quadrupole field, a characteristic signature of the Hall MHD, has been made in the MRX neutral sheet, where the sheet width is comparable to the ion skin depth. It is important to note that the Hall effect, which occurs due to two-dimensional laminar flows of electrons in the reconnection plane, is observed together with the presence of low and high frequency magnetic turbulence, which often has three-dimensional structures. These observations in MRX have striking similarities to the recent magnetospheric measurements of reconnection region, in which the quadrupole component has been detected together with magnetic fluctuations.
Abstract-The spherical tokamak (ST) is a leading candidate for a fusion nuclear science facility (FNSF) due to its compact size and modular configuration. The National Spherical Torus eXperiment (NSTX) is a MA-class ST facility in the U.S. actively developing the physics basis for an ST-based FNSF. In plasma transport research, ST experiments exhibit a strong (nearly inverse) scaling of normalized confinement with collisionality, and if this trend holds at low collisionality, high fusion neutron fluences could be achievable in very compact ST devices. A major motivation for the NSTX Upgrade (NSTX-U) is to span the next factor of 3-6 reduction in collisionality. To achieve this collisionality reduction with equilibrated profiles, NSTX-U will double the toroidal field, plasma current, and NBI heating power and increase the pulse length from 1-1.5s to 5s. In the area of stability and advanced scenarios, plasmas with higher aspect ratio and elongation, high βN , and broad current profiles approaching those of an ST-based FNSF have been produced in NSTX using active control of the plasma β and advanced resistive wall mode control. High non-inductive current fractions of 70% have been sustained for many current diffusion times, and the more tangential injection of the 2nd NBI of the Upgrade is projected to increase the NBI current drive by up to a factor of 2 and support 100% non-inductive operation. More tangential NBI injection is also projected to provide non-solenoidal current ramp-up (from IP = 0.4MA up to 0.8-1MA) as needed for an ST-based FNSF. In boundary physics, NSTX and higher-A tokamaks measure an inverse relationship between the scrape-off layer heat-flux width and plasma current that could unfavorably impact nextstep devices. Recently, NSTX has successfully demonstrated very high flux expansion and substantial heat-flux reduction using a snowflake divertor configuration, and this type of divertor is incorporated in the NSTX-U design. The physics and engineering design supporting NSTX Upgrade are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.