Grain boundary and intragranular deformations have been analysed during high temperature creep of a PM nickel-based superalloy. Local deformation has been quantified using an original microextensometry technique. This technique consists in calculating deformation of ceramic square grids deposited on flat specimens thanks to an electron lithography technique. Grain boundary sliding (GBS) was quantified by measuring microgrid offsets at grain boundaries. Strain maps and GBS maps have been computed. Superimposition with electron back scattered diffraction (EBSD) maps allowed studying the influence of grain boundary character on their deformation behaviour. The effectiveness of this technique was demonstrated through creep test performed at 700, 750 and 800°C under an applied stress of 700 MPa. The results showed that grain boundary and intragranular mechanisms of deformation accommodate one's each other to preserve the continuity of deformation in the material. Modification of deformation mechanisms within grains was related to coarsening of tertiary γ' precipitates with increase of temperature. Simultaneously, decrease of GBS contribution was observed when temperature increases.
In situ tensile tests in a scanning electron microscope (SEM) have been conducted on a 8layer 5-harness satin carbon fibre and epoxy matrix composite to observe the first stages of damage at the scale of fibres and matrix. A speckle pattern based on a suspension of alumina particles was applied onto the surface of the specimen to facilitate the use of digital image correlation (DIC). Local and finite element (FE) DIC are compared on pictures acquired during the tensile tests, with and without a speckle pattern. FE DIC with mechanical regularization was found to be the only approach able to measure displacement fields at a fine enough resolution in both cases. This method, initially created for homogeneous materials, was then adapted to heterogeneous materials. First, a microstructure consistent mesh was created and used for correlation purposes. Second, the difference between the mechanical properties of the constituents is taken into account in the mechanical regularization. Last, the accuracy of the method is analysed. The adaptation presented herein was proved to be able to measure displacement fields in the matrix between fibres with an error of 10 nm (a fifth of a pixel) and to detect the initiation of the first damage mechanisms by means of the mechanical residuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.