In cases where fire debris contains soil, microorganisms can rapidly and irreversibly alter the chemical composition of any ignitable liquid residue that may be present. In this study, differences in microbial degradation due to the season in which the sample is collected was examined. Soil samples were collected from the same site during Fall, Winter, Spring and Summer and the degradation of gasoline was monitored over 30 days. Predominant viable bacterial populations enumerated using real-time PCR and reverse transcriptase polymerase chain reaction (RT-PCR) enumeration revealed the predominant viable bacterial genera to be Alcaligenes, Bacillus, and Flavobacterium. Overall, the compounds most vulnerable to microbial degradation are the n-alkanes, followed by the mono-substituted alkylbenzenes (e.g., toluene, ethylbenzene, propylbenzene and isopropylbenzene). Benzaldehyde (a degradation product of toluene) was also identified as a marker for the extent of biodegradation.Ultimately, it was determined that soil collected during an unusually hot and dry summer exhibited the least degradation with little to no change in gasoline for up to 4 days, readily detectable n-alkanes for up to 7 days and relatively high levels of resilient compounds such as
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.