Differentiation of cell types homologous between species are controlled by conserved networks of regulatory elements driving gene expression. In order to identify conservation of gene expression and chromatin accessibility during cell differentiation in two different species. We collected a daily time-course of gene expression and chromatin accessibility in rat and human to quantify conserved and species-specific chromatin dynamics during embryonic stem cell differentiation to definitive endoderm (DE) as well as to neuronal progenitor cells (NPC). We identify shared and cell-type specific transient differentiation markers in each species, including key transcription factors that may regulate differentiation into each cell-type and their candidate cis-regulatory elements (cCREs). Our analysis shows that DE differentiation has higher conservation of gene expression and chromatin accessibility than NPC differentiation. We provide the first global comparison of transcriptional complexity and chromatin dynamics between human and rat for DE and NPC differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.