Stokes parameters form a Minkowskian 4-vector under various optical transformations. As a consequence, the resulting two-by-two density matrix constitutes a representation of the Lorentz group. The associated Poincaré sphere is a geometric representation of the Lorentz group. Since the Lorentz group preserves the determinant of the density matrix, it cannot accommodate the decoherence process through the decaying off-diagonal elements of the density matrix, which yields to an increase in the value of the determinant. It is noted that the O(3, 2) de Sitter group contains two Lorentz subgroups. The change in the determinant in one Lorentz group can be compensated by the other. It is thus possible to describe the decoherence process as a symmetry transformation in the O(3, 2) space. It is shown also that these two coupled Lorentz groups can serve as a concrete example of Feynman's rest of the universe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.