Lithium-ion battery for electric vehicles contains a large number of battery tabs with multiple and thin sheets. Dissimilar metals are often used for different electrodes, for example, the copper and nickel are often used for negative electrode and the aluminum is often used for positive electrode. Meanwhile the thickness of metal sheets are various at different locations. Ultrasonic spot welding is very capable of welding similar and dissimilar combinations. However, there are less heat generation and plastic deformation in the bottom interfaces where ultrasonic energy is difficult to reach. This will result in the unbonded region occurrence caused by ultrasonic energy attenuation.
In this work, experimental investigation was conducted to identify the effect of ultrasonic energy on joint characterization in ultrasonic welding multiple tabs by comparing the plastic deformation in different layers and various joint interfaces. Two sonotrodes with different knurl size were used to produce the welding energy for the tabs joining. Samples were cross-sectioned along vibration direction to obtain hardness profiles and metallographic maps. The hardness profile can be used to identify the changes of grain morphology. Hardness and grain size changes in different layers were also studied to reflect how ultrasonic energy decrease from top to bottom in battery tabs. Thereby, the relationship between material attributes and ultrasonic energy loss was established based on the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.