Undirected graphical models have been widely used to model the conditional independence structure of high-dimensional random vector data for years. In many modern applications such as EEG and fMRI data, the observations are multivariate random functions rather than scalars. To model the conditional independence of this type of data, functional graphical models are proposed and have attracted an increasing attention in recent years. In this paper, we propose a neighborhood selection approach to estimate Gaussian functional graphical models. We first estimate the neighborhood of all nodes via function-on-function regression, and then we can recover the whole graph structure based on the neighborhood information. By estimating conditional structure directly, we can circumvent the need of a well-defined precision operator which generally does not exist. Besides, we can better explore the effect of the choice of function basis for dimension reduction. We give a criterion for choosing the best function basis and motivate two practically useful choices, which we justified by both theory and experiments and show that they are better than expanding each function onto its own FPCA basis as in previous literature. In addition, the neighborhood selection approach is computationally more efficient than fglasso as it is more easy to do parallel computing. The statistical consistency of our proposed methods in high-dimensional setting are supported by both theory and experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.