This paper aims to propose a method to determine the temperature rise and rated capacity of induction motors under different working systems. A dynamic mathematical model, a 3D temperature field model, and finite element method are used to analyze the electromagnetic loss and transient temperature rise, respectively. The influence of the motor starting process on the temperature rise is taken into account, which resolves the complex loading of transient heat source. The maximum allowable running times for the motor operating with different overloads are determined. The relationship between the motor output power and the allowable running time is obtained, and it provides a basis to determine the rated capacity of motor under S2 working system. The relationship between the motor output power and the temperature rise under different load duration rates is also obtained and provides reasonable evidence to determine the rated capacity of the motor under S3-working system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.