A finite element method involving collocation method with quintic B-splines as basis functions has been developed to solve tenth order boundary value problems. The fifth order, sixth order, seventh order, eighth order, ninth order and tenth order derivatives for the dependent variable are approximated by the central differences of fourth order derivatives. The basis functions are redefined into a new set of basis functions which in number match with the number of selected collocated points in the space variable domain. The proposed method is tested on several linear and non-linear boundary value problems. The solution of a non-linear boundary value problem has been obtained as the limit of a sequence of solutions of linear boundary value problems generated by quasilinearization technique. Numerical results obtained by the present method are in good agreement with the exact solutions available in the literature.
A finite element method involving collocation method with quartic B-splines as basis functions have been developed to solve fifth order boundary value problems. The fifth order and fourth order derivatives for the dependent variable are approximated by the central differences of third order derivatives. The basis functions are redefined into a new set of basis functions which in number match with the number of collocated points selected in the space variable domain. The proposed method is tested on four linear and two non-linear boundary value problems. The solution of a non-linear boundary value problem has been obtained as the limit of a sequence of solutions of linear boundary value problems generated by quasilinearization technique. Numerical results obtained by the present method are in good agreement with the exact solutions available in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.