The question of how intensive motor training restores motor function after brain damage or stroke remains unresolved. Here we show that the ipsilesional ventral premotor cortex (PMv) and perilesional primary motor cortex (M1) of rhesus macaque monkeys are involved in the recovery of manual dexterity after a lesion of M1. A focal lesion of the hand digit area in M1 was made by means of ibotenic acid injection. This lesion initially caused flaccid paralysis in the contralateral hand but was followed by functional recovery of hand movements, including precision grip, during the course of daily postlesion motor training. Brain imaging of regional cerebral blood flow by means of H 2 15O-positron emission tomography revealed enhanced activity of the PMv during the early postrecovery period and increased functional connectivity within M1 during the late postrecovery period. The causal role of these areas in motor recovery was confirmed by means of pharmacological inactivation by muscimol during the different recovery periods. These findings indicate that, in both the remaining primary motor and premotor cortical areas, time-dependent plastic changes in neural activity and connectivity are involved in functional recovery from the motor deficit caused by the M1 lesion. Therefore, it is likely that the PMv, an area distant from the core of the lesion, plays an important role during the early postrecovery period, whereas the perilesional M1 contributes to functional recovery especially during the late postrecovery period.
Accumulating evidence suggests that phospholipase B, secreted by pathogenic fungi such as Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, functions as one of the virulence factors. In the present study, we have attempted to clone phospholipase B gene from C. albicans. By RT-PCR analysis with degenerate primers based on conserved regions of phospholipase B from Saccharomyces cerevisiae, Penicillium notatum and Torulaspora delbrueckii two similar but different cDNA fragments were obtained. One corresponded to the partial sequence of caPLB1, recently cloned phospholipase B gene from C. albicans by a different approach (Leidich et al.: J Biol Chem 1998; 273: 26078-86). The other fragments contained sequences similar to the corresponding sequences of phospholipase B from other fungi. The presence of two related genes was confirmed by Southern and Northern blot analyses. The full length of the second C. albicans phospholipase B gene (caPLB2) encoded a putative protein with 608 amino acids and contained a potential signal peptide sequence and a putative catalytic region, which are found in phospholipase B from other fungi. Consistent with the findings of caPLB1, caPLB2 also lacks a cluster of hydrophobic amino acids at the COOH-terminal, which may function as a signal of glycosylphosphatidylinositol anchor.
Dexterous hand movements can be restored with motor rehabilitative training after a lesion of the lateral corticospinal tract (l-CST) in macaque monkeys. To maximize effectiveness, the optimal time to commence such rehabilitative training must be determined. We conducted behavioral analyses and compared the recovery of dexterous hand movements between monkeys in which hand motor training was initiated immediately after the l-CST lesion (early-trained monkeys) and those in which training was initiated 1 mo after the lesion (late-trained monkeys). The performance of dexterous hand movements was evaluated by food retrieval tasks. In early-trained monkeys, performance evaluated by the success rate in a vertical slit task (retrieval of a small piece of food through a narrow vertical slit) recovered to the level of intact monkeys during the first 1-2 mo after the lesion. In late-trained monkeys, the task success rate averaged ∼30% even after 3 mo of rehabilitative training. We also evaluated hand performance with the Klüver board task, in which monkeys retrieved small spherical food pellets from cylindrical wells. Although the success rate of the Klüver board task did not differ between early- and late-trained monkeys, kinematic movement analysis showed that there was a difference between the groups: late-trained monkeys with an improved success rate frequently used alternate movement strategies that were different from those used before the lesion. These results suggest that early rehabilitative training after a spinal cord lesion positively influences subsequent functional recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.