The information on the frictional resistance of a self-propelled robotic capsule endoscope moving inside the body is very important for the design and the performance enhancement of such parameters of the capsule endoscope as power consumption, motion control and positioning accuracy. Based on this motivation, the ultimate goal of this research was to develop an analytical model that can predict the frictional resistance of the capsule endoscope moving inside the living body. In this work, experimental investigations of the fundamental frictional characteristics and the viscoelastic behaviors of the small intestine were performed by using custom-built testers and various capsule dummies. The small intestine of a pig was used for the experiments. Experimental results showed that the average frictional force was 10-50 mN and higher moving speed of the capsule dummy resulted in larger frictional resistance of the capsule. In addition, the friction coefficient did not change significantly with respect to the apparent area of contact between the capsule dummy and the intestine, and also the friction coefficients decreased with an increase in the normal load and varied from 0.08 to 0.2. Such frictional behaviors could be explained by the lubrication characteristics of the intestine surface and typical viscoelastic characteristics of the small intestine material. Also, based on the experimental results, a viscoelasticity model for the stress relaxation of the small intestine could be derived.KEY WORDS: biotribology, capsule endoscope, small intestine, stress relaxation, viscoelasticity Nomenclature F Friction force (N) l Friction coefficient N Normal force applied to the capsule (N) r(t) Stress applied to the small intestine (Pa, N/m 2 ) 0Strain applied to the small intestine t Time
The results from this study clearly demonstrated the sequential histological changes during periodontal tissue regeneration by hPDLSCs. Understanding of this process would potentially enable us to develop better cell-based treatment techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.